重磅!PyTorch官宣2.0版本即将发布,最新torch.compile特性说明!

2022年的PyTorch Conference在新奥尔良举办。刚刚会上的keynote官宣PyTorch2.0版本即将到来。PyTorch是目前最流行的深度学习框架之一,它的易用性被广大的用户所喜爱。关于PyTorch2.0,官方透露了一些值得期待的特性。

小木 186 pytorch
6张示意图解释6种语言模型(Language Transformer)使用方式

近几年语言模型的发展速度很快,各种大语言预训练模型的推出让算法在各种NLP的任务中都取得了前所未有的成绩。其中2017年谷歌发布的Attention is All You Need论文将transformer架构推向了世界,这也是现在最流行的语言模型结构。威斯康星大学麦迪逊分校的统计学教授Sebastian Raschka总结了6中Language Transformer的使用方法。值得一看。

小木 252 transformer/预训练模型
好东西!Transformer入门神作手把手按行实现Transformer教程The Annotated Transformer2022版本来袭

The Annotated Transfomer是哈佛大学的研究人员于2018年发布的Transformer新手入门教程。这个教程从最基础的理论开始,手把手教你按照最简单的python代码实现Transformer,一经推出就广受好评。2022年,这个入门教程有了新的版本。

小木 137 transformer/教程
Batch Normalization应该在激活函数之前使用还是激活函数之后使用?

Batch Normalization(BN)是深度学习领域最重要的技巧之一,最早由Google的研究人员提出。这个技术可以大大提高深度学习网络的收敛速度。简单来说,BN就是将每一层网络进行归一化,就可以提高整个网络的训练速度,并打乱训练数据,提升精度。但是,BN的使用可以在很多地方,很多人最大的困惑是放在激活函数之前还是激活函数之后使用,著名机器学习领域的博主Santiago总结了这部分需要注意的内容。

小木 250 BatchNormalization/深度学习/激活函数
重磅!Scikit-learn与Hugging Face强强联手了!

Hugging Face一直在努力支持深度学习,但是,这只是深度学习的一部分。传统统计机器学习领域里面最重要的工具Scikit-learn如今终于和深度学习的开源标杆工具Hugging Face联手。

小木 172 HuggingFace/sklearn/transformers
12倍推理速度提升!Meta AI开源全新的AI推理引擎AITemplate

为了提高AI模型的推理速度,降低在不同GPU硬件部署的成本,Meta AI研究人员在昨天发布了一个全新的AI推理引擎AITemplate(AIT),该引擎是一个Python框架,它在各种广泛使用的人工智能模型(如卷积神经网络、变换器和扩散器)上提供接近硬件原生的Tensor Core(英伟达GPU)和Matrix Core(AMD GPU)性能。

小木 580 AITemplate/AI推理速度/PyTorch
卷到家了!发布2天后MetaAI的Text-to-Video模型MAKE-A-VIDEO的开源PyTorch实现就要来了!

MetaAI在2天前刚发布了一个最新的Text-to-Video模型,让生成模型从逼真的图片生成往前推进到视频生成。当然,官方还是希望将其当作一种SaaS服务提供。但是,才2天,业界基于论文的开源PyTorch实现就已经准备公开,且获得了569个Star!卷到家了!

小木 229 pytorch/text-to-video
Stable Diffusion的最新实现——KerasCV的官方实现!

Stable Diffusion是一种功能强大的开源文本到图像(Text-to-Image)生成模型。虽然目前有多个开源项目可以实现基于文本提示(prompt)创建图像,但Stable Diffusion性能极其强大,其结果甚至可以媲美DALL·E2。而现在KerasCV提供了这个模型的官方实现!

小木 439 KerasCV/stablediffusion/text-to-image
KerasCV——一个新的简单易用的计算机视觉(CV)算法库

KerasCV是由Keras官方团队发布的一个计算机视觉框架,可以帮助大家用来处理计算机视觉领域的相关任务和问题。这是2022年4月刚发布的最新产品,由于是官方团队出品的工具,所以质量有保证,且社区活跃,一直在积极更新。

小木 225 keras/python/算法库
缺少有标注的数据集吗?福音来了——HuggingFace发布few-shot神器SetFit

少量标记的学习(Few-shot learning)是一种在较少标注数据集中进行模型训练的一种学习方法。为了解决大量标注数据难以获取的情况,利用预训练模型,在少量标记的数据中进行微调是一种新的帮助我们进行模型训练的方法。而就在昨天,Hugging Face发布了一个新的语句transformers(Sentence Transformers)框架,可以针对少量标记数据进行模型微调以获取很好的效果。

小木 469 few-shotlearning/sentencetransformers/transformers
谷歌官方高性能大规模高维数据处理库TensorStore发布!

今天Google发布了TensorStore,这是一个开源的C++和Python软件库,设计用于存储和操作大规模n维数据。TensorStore已经被用来解决科学计算中的关键工程挑战(例如,管理和处理神经科学中的大型数据集,如石油级的三维电子显微镜数据和神经元活动的 "4d "视频)。TensorStore还被用于创建大规模的机器学习模型,如PaLM,解决了分布式训练期间管理模型参数(检查点)的问题。

小木 484 Tensorflow/TensorStore/好物分享/高维数据
Stable Diffusion的Tensorflow/Keras实现及使用

最近一段时间Text-to-Image模型十分火热。OpenAI的DALL·E2模型的效果十分惊艳。不过,由于Open AI现在的不Open策略,大家还无法使用这个模型,业界只开放了一个小版本的DALL·E mini。不过,前段时间,Stability AI发布的Stable Diffusion其效果明显好于现有模型,且免费开放使用,让大家都开心了一把。不过原有模型是Torch实现的,而现在,基于Tensorflow/Keras实现的Stable Diffusion已经开源。

小木 453 keras/StableDiffusion/tensorflow/text-to-image
重磅!Meta将PyTorch移交给Linux基金会!

昨天,Meta的Zuckerberg宣布,将PyTorch由Meta AI移交给Linux Foundation托管。这意味着PyTorch从今天起从Meta独立,并作为Linux Foundation下的一个项目。

小木 289 pytorch/开源
TorchVision最新0.13版本发布!

PyTorch最新的1.12版本已经在前天发布。而其中TorchVision是基于PyTorch框架开发的面向CV解决方案的一个PyThon库,其最主要的特点是包含了很多流行的数据集、模型架构以及预训练模型等。本次也随着PyTorch1.12的发布更新到了v0.13。此次发布包含几个非常好的提升,值得大家关注。

小木 718 cv/pytorch/torchvision/开源软件
PyTorch终于支持苹果的M1芯片了!

自从苹果发布M1系列的自研芯片开始,基于ARM架构的电脑处理器开始大放异彩。而强大的M1芯片的能力也让很多Mac用户高兴很久。而就在现在,M1也开始支持PyTorch的深度学习框架了。PyTorch官网刚刚宣布,经过和Apple的Metal工程师队伍的合作,PyTorch支持Mac的GPU加速了。

小木 483 pytorch/苹果
使用Jupyter Notebook编程与python脚本编程的差异

Jupyter Notebook虽然在教学等领域有着非常大的优势,但是实际编程中,它的效率、可维护性等方面与python脚本相比的差距到底在哪也一直不那么清晰。就在上个月底,JetBrains的研究人员使用了大量的数据详细对比了二者的差异。这里总结一下其主要结论。

小木 681 Jupyter/编程/编程工具
TensorFlow与PyTorch近几年发展对比

Tensorflow和PyTorch是深度学习最流行的两个框架,二者都有坚定的支持者。一般认为由于Google的支持,TensorFlow的社区支持比较好,在工业应用广泛。但是尽管有keras加持,但易用性方面依然被认为不如PyTorch。而后者最早由Facebook人工智能团队开发。由于其易用性,被认为在科学研究中有广泛使用。那么,最近几年二者发展如何,是否实际还如之前的观点一样,这里AssemblyAI的一个作者做了一些对比。

小木 1572 pytorch/tensorflow
重磅!MLPerf™训练1.1成绩发布!AI训练正在超越摩尔定律!

MLPerf™是MLCommons发布的一个用来测试AI相关软硬件性能的基准测试工具。2021年12月1日, Training v1.1的结果发布,这个结果不仅展示了最新的AI相关软硬件的进展,也有一个新的现象,就是AI训练正在超越摩尔定律。本文将简要解读一下相关数据。

小木 1129 AI测试/MLPerf
使用kaggle房价预测的实例说明预测算法中OneHotEncoder、LabelEncoder与OrdinalEncoder的使用及其差异

对于分类特征的处理,sklearn中常见的方法有两种,一种是OneHotEncoder,另一种很多人说是LabelEncoder,其实不对。sklearn中,还有一个OrdinalEncoder,二者似乎一样,但其实并不相同,差别很大。本文将用Kaggle的房价预测的实例来描述如何这些差异以及不同处理对预测算法的影响。

小木 1023 kaggle/sklearn/预测
深度学习中为什么要使用Batch Normalization

Batch Normalization(BN)是一种深度学习的layer(层)。它可以帮助神经网络模型加速训练,并同时使得模型变得更加稳定。尽管BN的效果很好,但是它的原理却依然没有十分清晰。本文总结一些相关的讨论,来帮助我们理解BN背后的原理。

小木 890 BatchNormalization/深度学习
Python3.10版本的结构模式匹配(structural pattern matching)简介

Python最新正式版本3.10在10月4日已经发布。这个版本从2020年5月开始开发,经历差不多一年半的时间终于正式发布。当然每一个新版本都有很多新功能。我们将持续关注新功能,在这篇文章中,我们将简述3.10中新功能中的语法——结构模式匹配(structural pattern matching)。

小木 925 python/structuralpatternmatching/结构模式匹配
亚马逊最新发布Feature Store简介

在2020年的亚马逊reInvent发布会上,亚马逊正式发布了一项新的服务,即Amazon SageMaker Feature Store,中文简介是适用于机器学习特征的完全托管的存储库。 Feature Store是这两年兴起的另一个关于人工智能系统的基础设施,应该也是未来几年最重要的人工智能基础设施之一。本文将介绍一下Feature Store是什么以及为什么很多企业开始推广这个东西。

小木 3727 AI/FeatureStore/云计算/人工智能/机器学习
Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例

RNN的应用有很多,尤其是两个RNN组成的Seq2Seq结构,在时序预测、自然语言处理等方面有很大的用处,而每个RNN中一个节点是一个Cell,它是RNN中的基本结构。本文从如何使用RNN建模数据开始,重点解释RNN中Cell的结构,以及Keras中Cell相关的输入输出及其维度。我已经尽量解释了每个变量,但可能也有忽略,因此可能对RNN之前有一定了解的人会更友好,本文最主要的目的是描述Keras中RNNcell的参数以及输入输出的两个注意点。如有问题也欢迎指出,我会进行修改。

小木 3062 Keras/RNN/Seq2Seq/SimpleRNNCell/深度学习
Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)

在使用Dask进行两个dataframe的concatenate操作的时候抛出ValueError,本文记录这个错误以及解决方案。

小木 2309 dask/dataframe
考虑价格和促销影响的销售预测算法实践

这是一篇来自Towards Data Science上面的一篇个人实践分享,主要是针对销量进行预测。一般来说,销量受到价格、季节等因素影响较大。这里就是考虑这些因素进行的一个实践。值得大家一试。这里我们翻译一下,并对其中的某些工作做一些简单的解释。

小木 3323 Prophet/python/时间序列分析/流量预测
Scikit-Learn最新更新简介

Scikit-Learn有很优秀的机器学习处理思想,包括TensorFlow等新框架都借鉴了它的设计思想。最近的更新也让Scikit-Learn更加强大。在描述这个更新之前我们先简单看一下历史,然后让我们一起看看都有什么新内容吧。

小木 2921 sk-learn/人工智能/机器学习/编程
TensorFlow中常见的错误解释及解决方法

TensorFlow中常见的错误解释及解决方法

小木 8688 keras/tensorflow
深度学习技巧之Batch Normalization

Batch Normalization是深度学习中最重要的技巧之一。是由Sergey Ioffe和Christian Szeged创建的。Batch Normalization使超参数的搜索更加快速便捷,也使得神经网络鲁棒性更好。本篇博客将简要介绍相关概念和原理。

小木 4275 coursera/深度学习/调优
发现新大陆!(申请领地)

这是一个新大陆,有博客园,算法区,技术堡,论文馆,数据林,工具库。尽情畅游吧!

云客 1885 myself/newmainland/start