Demand-driven frequent itemset mining using pattern structures

作者:Haixun Wang, Chang-Shing Perng, Sheng Ma, Philip S. Yu

摘要

Frequent itemset mining aims at discovering patterns the supports of which are beyond a given threshold. In many applications, including network event management systems, which motivated this work, patterns are composed of items each described by a subset of attributes of a relational table. As it involves an exponential mining space, the efficient implementation of user preferences and mining constraints becomes the first priority for a mining algorithm. User preferences and mining constraints are often expressed using patterns’ attribute structures. Unlike traditional methods that mine all frequent patterns indiscriminately, we regard frequent itemset mining as a two-step process: the mining of the pattern structures and the mining of patterns within each pattern structure. In this paper, we present a novel architecture that uses pattern structures to organize the mining space. In comparison with the previous techniques, the advantage of our approach is two-fold: (i) by exploiting the interrelationships among pattern structures, execution times for mining can be reduced significantly; and (ii) more importantly, it enables us to incorporate high-level simple user preferences and mining constraints into the mining process efficiently. These advantages are demonstrated by our experiments using both synthetic and real-life datasets.

论文关键词:Association rule mining, Database integration, Data mining

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10115-004-0170-9