A foundation for capturing and querying complex multidimensional data
作者:
Highlights:
•
摘要
On-line analytical processing (OLAP) systems considerably improve data analysis and are finding wide-spread use. OLAP systems typically employ multidimensional data models to structure their data. This paper identifies 11 modeling requirements for multidimensional data models. These requirements are derived from an assessment of complex data found in real-world applications. A survey of 14 multidimensional data models reveals shortcomings in meeting some of the requirements. Existing models do not support many-to-many relationships between facts and dimensions, lack built-in mechanisms for handling change and time, lack support for imprecision, and are generally unable to insert data with varying granularities. This paper defines an extended multidimensional data model and algebraic query language that address all 11 requirements. The model reuses the common multidimensional concepts of dimension hierarchies and granularities to capture imprecise data. For queries that cannot be answered precisely due to the imprecise data, techniques are proposed that take into account the imprecision in the grouping of the data, in the subsequent aggregate computation, and in the presentation of the imprecise result to the user. In addition, alternative queries unaffected by imprecision are offered. The data model and query evaluation techniques discussed in this paper can be implemented using relational database technology. The approach is also capable of exploiting multidimensional query processing techniques like pre-aggregation. This yields a practical solution with low computational overhead.
论文关键词:Multidimensional data,Data modelling,Imprecise data,On-line analytical processing
论文评审过程:Available online 7 August 2001.
论文官网地址:https://doi.org/10.1016/S0306-4379(01)00023-0