Temporal data exchange
作者:
Highlights:
•
摘要
Data exchange is the problem of transforming data that is structured under a source schema into data structured under another schema, called the target schema, so that both the source and target data satisfy the relationship between the schemas. Many applications such as planning, scheduling, medical and fraud detection systems, require data exchange in the context of temporal data. Even though the formal framework of data exchange for relational database systems is well-established, it does not immediately carry over to the settings of temporal data, which necessitates reasoning over unbounded periods of time.In this work, we study data exchange for temporal data. We first motivate the need for two views of temporal data: the concrete view, which depicts how temporal data is compactly represented and on which the implementations are based, and the abstract view, which defines the semantics of temporal data as a sequence of snapshots. We first extend the chase procedure for the abstract view to have a conceptual basis for the data exchange for temporal databases. Considering non-temporal source-to-target tuple generating dependencies and equality generating dependencies, the chase algorithm can be applied on each snapshot independently. Then we define a chase procedure (called c-chase) on concrete instances and show the result of c-chase on a concrete instance is semantically aligned with the result of chase on the corresponding abstract instance. In order to interpret intervals as constants while checking if a dependency or a query is satisfied by a concrete database, we will normalize the instance with respect to the dependency or the query. To obtain the semantic alignment, the nulls (which are introduced by data exchange and model incompleteness) in the concrete view are annotated with temporal information. Furthermore, we show that the result of the concrete chase provides a foundation for query answering. We define naïve evaluation on the result of the c-chase and show it produces certain answers.
论文关键词:Data exchange,Temporal database,Chase,Incomplete information,Abstract view,Concrete view
论文评审过程:Received 2 May 2017, Revised 3 July 2019, Accepted 5 July 2019, Available online 11 July 2019, Version of Record 15 July 2019.
论文官网地址:https://doi.org/10.1016/j.is.2019.07.004