Cache management for shared sequential data access

作者:

Highlights:

摘要

This paper presents a new set of cache management algorithms for shared data objects that are accessed sequentially. I/O delays on sequentially accessed data is a dominant performance factor in many application domains, in particular for batch processing. Our algorithms fall into three classes: replacement, prefetching and scheduling strategies. Our replacement algorithms empirically estimate the rate at which the jobs are proceeding through the data. These velocity estimates are used to project the next reference times for cached data objects and our algorithms replace data with the longest time to re-use. The second type of algorithm performs asynchronous prefetching. This algorithm uses the velocity estimations to predict future cache misses and attempts to preload data to avoid these misses. Finally, we present a simple job scheduling strategy that increases locality of reference between jobs. Our new algorithms are evaluated through a detailed simulation study. Our experiments show that the algorithms substantially improve performance compared to traditional algorithms for cache management.

论文关键词:Caching,buffer management,replacement strategies,prefetching,sequential data access,batch processing,workload scheduling,performance evaluation

论文评审过程:Received 5 November 1992, Revised 10 April 1993, Available online 17 June 2003.

论文官网地址:https://doi.org/10.1016/0306-4379(93)90017-U