Social relation extraction from texts using a support-vector-machine-based dependency trigram kernel
作者:
Highlights:
•
摘要
We propose a social relation extraction system using dependency-kernel-based support vector machines (SVMs). The proposed system classifies input sentences containing two people’s names on the basis of whether they do or do not describe social relations between two people. The system then extracts relation names (i.e., social-related keywords) from sentences describing social relations. We propose new tree kernels called dependency trigram kernels for effectively implementing these processes using SVMs. Experiments showed that the proposed kernels delivered better performance than the existing dependency kernel. On the basis of the experimental evidence, we suggest that the proposed system can be used as a useful tool for automatically constructing social networks from unstructured texts.
论文关键词:Social relation extraction,Dependency trigram kernel,Support vector machine
论文评审过程:Received 11 July 2011, Revised 6 April 2012, Accepted 15 April 2012, Available online 11 May 2012.
论文官网地址:https://doi.org/10.1016/j.ipm.2012.04.002