ER

ERNIE-ViLG 2.0

ERNIE-ViLG 2.0

发布时间: 2022-10-27654
模型参数
240.0亿
上下文长度
2K
中文支持
不支持
推理能力

模型基本信息

推理过程
不支持
上下文长度
2K tokens
最大输出长度
暂无数据
模型类型
暂无数据
发布时间
2022-10-27
模型文件大小
暂无数据
推理模式
暂无模式数据

开源和体验地址

代码开源状态
暂无数据
预训练权重开源
暂无数据
在线体验
暂无在线体验地址

官方介绍与博客

API接口信息

接口速度
暂无数据
暂无公开的 API 定价信息。

评测得分

当前尚无可展示的评测数据。

发布机构

模型解读

ERNIE-ViLG 2.0是一个基于知识增强和混合去噪专家策略的文本到图像生成模型。该模型的设计理念是在学习过程中融入知识,并通过混合去噪专家策略来提高模型的生成能力。根据论文中的描述,该模型最多可以扩展到240亿参数规模。

模型简介

ERNIE-ViLG 2.0是一个基于知识增强和混合去噪专家策略的文本到图像生成模型。该模型的设计理念是在学习过程中融入知识,并通过混合去噪专家策略来提高模型的生成能力。该模型采用中文提示作为输入,生成高分辨率的图像,与最近的以英文为主的文本到图像模型不同。


模型特点
  1. 知识增强:模型在学习过程中融入知识,这有助于提高模型的生成能力。
  2. 混合去噪专家策略:该策略可以提高模型的生成能力,使生成的图像更加自然和逼真。
  3. 高分辨率图像生成:模型可以根据中文提示生成高分辨率的图像。


模型参数

论文中并未详细介绍模型的参数。


性能测试结果

根据论文中的实验结果,ERNIE-ViLG 2.0在ViLG-300上的人类评估结果显示,与DALL-E 2和Stable Diffusion等模型相比,人类评估者更喜欢ERNIE-ViLG 2.0。在图像-文本对齐和图像保真度两个维度上,ERNIE-ViLG 2.0都优于所有其他模型。此外,ERNIE-ViLG 2.0可以生成比基线模型更清晰、纹理更好的图像。


下图是与其它模型的对比结果:

可以看到,在MS-COCO 256 × 256数据集上做的文本生成图像实验中,ERNIE-ViLG2.0的效果最好。


在知识增强策略的部分,实验结果显示,将知识融入学习过程可以显著提高图像保真度、图像-文本对齐以及收敛速度。在混合去噪专家策略的部分,实验结果显示,增加专家的数量可以提高模型的生成能力,使生成的图像更加自然和逼真。

总的来说,ERNIE-ViLG 2.0模型在文本到图像生成任务上表现出色,无论是在图像质量、图像-文本对齐,还是在收敛速度上,都优于其他模型。


ERNIE-ViLG 2.0实际生成的图片效果

下图是官方发布的1024*1024的效果图,效果很好。



目前ERNIE-ViLG 2.0已经被文心系列的CV模型取代。不过HuggingFace上的demo依然可用。


DataLearner 官方微信

欢迎关注 DataLearner 官方微信,获得最新 AI 技术推送

DataLearner 官方微信二维码