加载中...
加载中...
随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。
一个从GitHub上提炼的真实世界的Python代码仓的任务评测数据集
数据来源:DataLearnerAI
数据优先来自官方发布(GitHub、Hugging Face、论文),其次为评测基准官方结果,最后为第三方评测机构数据。 了解数据收集方法
| 排名 | 模型 | |||
|---|---|---|---|---|
| 1 | 72 | 2025-07-03 | 未知 |