Efficient learning algorithms yield circuit lower bounds

作者:

Highlights:

摘要

We describe a new approach for understanding the difficulty of designing efficient learning algorithms. We prove that the existence of an efficient learning algorithm for a circuit class C in Angluin's model of exact learning from membership and equivalence queries or in Valiant's PAC model yields a lower bound against C. More specifically, we prove that any subexponential time, deterministic exact learning algorithm for C (from membership and equivalence queries) implies the existence of a function f in EXPNP such that f∉C. If C is PAC learnable with membership queries under the uniform distribution or exact learnable in randomized polynomial-time, we prove that there exists a function f∈BPEXP (the exponential time analog of BPP) such that f∉C.For C equal to polynomial-size, depth-two threshold circuits (i.e., neural networks with a polynomial number of hidden nodes), our result shows that efficient learning algorithms for this class would solve one of the most challenging open problems in computational complexity theory: proving the existence of a function in EXPNP or BPEXP that cannot be computed by circuits from C. We are not aware of any representation-independent hardness results for learning depth-2, polynomial-size neural networks with respect to the uniform distribution. Our approach uses the framework of the breakthrough result due to Kabanets and Impagliazzo showing that derandomizing BPP yields non-trivial circuit lower bounds.

论文关键词:Computational learning theory,Computational complexity,Circuit lower bounds,Hardness of learning,PAC learning,Exact learning

论文评审过程:Received 27 April 2007, Revised 4 December 2007, Available online 18 July 2008.

论文官网地址:https://doi.org/10.1016/j.jcss.2008.07.006