A flexible probabilistic framework for large-margin mixture of experts

作者:Archit Sharma, Siddhartha Saxena, Piyush Rai

摘要

Mixture-of-Experts (MoE) enable learning highly nonlinear models by combining simple expert models. Each expert handles a small region of the data space, as dictated by the gating network which generates the (soft) assignment of input to the corresponding experts. Despite their flexibility and renewed interest lately, existing MoE constructions pose several difficulties during model training. Crucially, neither of the two popular gating networks used in MoE, namely the softmax gating network and hierarchical gating network (the latter used in the hierarchical mixture of experts), have efficient inference algorithms. The problem is further exacerbated if the experts do not have conjugate likelihood and lack a naturally probabilistic formulation (e.g., logistic regression or large-margin classifiers such as SVM). To address these issues, we develop novel inference algorithms with closed-form parameter updates, leveraging some of the recent advances in data augmentation techniques. We also present a novel probabilistic framework for MoE, consisting of a range of gating networks with efficient inference made possible through our proposed algorithms. We exploit this framework by using Bayesian linear SVMs as experts on various classification problems (which has a non-conjugate likelihood otherwise generally), providing our final model with attractive large-margin properties. We show that our models are significantly more efficient than other training algorithms for MoE while outperforming other traditional non-linear models like Kernel SVMs and Gaussian Processes on several benchmark datasets.

论文关键词:Probabilistic modelling, Mixture of experts, Bayesian SVMs

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10994-019-05811-4