Learning Kernels for Unsupervised Domain Adaptation with Applications to Visual Object Recognition

作者:Boqing Gong, Kristen Grauman, Fei Sha

摘要

Domain adaptation aims to correct the mismatch in statistical properties between the source domain on which a classifier is trained and the target domain to which the classifier is to be applied. In this paper, we address the challenging scenario of unsupervised domain adaptation, where the target domain does not provide any annotated data to assist in adapting the classifier. Our strategy is to learn robust features which are resilient to the mismatch across domains and then use them to construct classifiers that will perform well on the target domain. To this end, we propose novel kernel learning approaches to infer such features for adaptation. Concretely, we explore two closely related directions. In the first direction, we propose unsupervised learning of a geodesic flow kernel (GFK). The GFK summarizes the inner products in an infinite sequence of feature subspaces that smoothly interpolates between the source and target domains. In the second direction, we propose supervised learning of a kernel that discriminatively combines multiple base GFKs. Those base kernels model the source and the target domains at fine-grained granularities. In particular, each base kernel pivots on a different set of landmarks—the most useful data instances that reveal the similarity between the source and the target domains, thus bridging them to achieve adaptation. Our approaches are computationally convenient, automatically infer important hyper-parameters, and are capable of learning features and classifiers discriminatively without demanding labeled data from the target domain. In extensive empirical studies on standard benchmark recognition datasets, our appraches yield state-of-the-art results compared to a variety of competing methods.

论文关键词:Domain adaptation, Kernels, Object recognition , Cross-dataset bias

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11263-014-0718-4