Motion detection and object tracking with discrete leaky integrate-and-fire neurons

作者:Lon Risinger, Khosrow Kaikhah

摘要

A biologically inspired visual system capable of motion detection and pursuit motion is implemented using a Discrete Leaky Integrate-and-Fire (DLIF) neuron model. The system consists of a visual world, a virtual retina, the neural network circuitry (DLIF) to process the information, and a set of virtual eye muscles that serve to move the input area (visual field) of the retina within the visual world. Temporal aspects of the DLIF model are heavily exploited including: spike propagation latency, relative spike timing, and leaky potential integration. A novel technique for motion detection is employed utilizing coincidence detection aspects of the DLIF and relative spike timing. The system as a whole encodes information using relative spike timing of individual action potentials as well as rate coded spike trains. Experimental results are presented in which the motion of objects is detected and tracked in real and animated video. Pursuit motion is successful using linear and also sinusoidal paths which include object velocity changes. The visual system exhibits dynamic overshoot correction heavily exploiting neural network characteristics. System performance is within the bounds of real-time applications.

论文关键词:Integrate-and-fire neuron, Motion detection, Object tracking

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-007-0092-9