Multiobjective differential evolution using homeostasis based mutation for application in software cost estimation

作者:Shailendra Pratap Singh, Anoj Kumar

摘要

The problem in software cost estimation revolves around accuracy. To improve the accuracy, heuristic/meta-heuristic algorithms have been known to yield better results when it is applied in the domain of software cost estimation. For the sake of accuracy in results, we are still modifying these algorithms. Here we have proposed a new meta-heuristic algorithm based on Differential Evolution (DE) by Homeostasis mutation operator. Software development requires high prediction and low Root Mean Squared Error (RMSE) and mean magnitude relative error(MMRE). The problem in software cost estimation relates to accurate prediction and minimization of RMSE and MMRE, which are used to solve multiobjective optimization. Many versions of DE were proposed, however multi-objective versions where the concept of Pareto optimality is used, are most popular. Pareto-Based Differential Evolution (PBDE) is one of them. Although the performance of this algorithm is very good, its convergence rate can be further improved by minimizing the time complexity of nondominated sorting, and by improving the diversity of solutions. This has been implemented by using efficient nondominated algorithm whose time complexity is better than the previous one and a new mutation scheme is implemented in DE which can provide more diversity among solutions. The proposed variant multiplies the Homeostasis value with one more vector, named the Homeostasis mutation vector, in the existing mutation vector to provide more bandwidth for selecting effective mutant solutions. The proposed approach provides more promising solutions to guide the evolution and helps DE escape the situation of stagnation. The performance of the proposed algorithm is evaluated on twelve benchmark test functions (bi-objective and tri-objective) on the Pareto-optimal front. The performance of the proposed algorithm is compared with other state-of-the-art algorithms on five multi-objective evolutionary algorithms (MOEAs). The result verifies that our proposed Homeostasis mutation strategy performs better than other state-of-the-art algorithms. Finally, application of MODE-HBM is applied to solve in terms of Pareto front, representing the trade-off between development RMSE, MMRE, and prediction for COCOMO model.

论文关键词:Adaptation, Optimization, Multi-objective evolutionary algorithm, Software cost estimation

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-017-0980-6