An autonomous multistrategy theorem proving system using knowledge-based techniques

作者:Shie-Jue Lee

摘要

Most general-purpose theorem-proving systems have weak search control. There is no alternative to the use of a large number of heuristics or strategies for search guidance. Choosing appropriate strategies for solving a given problem may require the knowledge of different strategies and may involve a lot of painstaking trial-and-error. To encourage the widespread use of computer reasoning systems, it is important that a theorem prover be usable by those with little knowledge of problem-solving strategies, and that a theorem prover be able to select good strategies for the user. An autonomous multistrategy theorem-proving system is developed, using knowledge-based techniques, to entirely free the user from the necessity of understanding the system or the merits of different strategies. All the user has to do is input his or her problem in first-order logic, and the system solves the problem efficiently for him or her without any manual intervention. The system embodies much of expert knowledge about how to solve problems. The knowledge is represented as metarules in knowledge base which guide a hyperlinking theorem prover to solve problems automatically and efficiently.

论文关键词:first-order logic, automated reasoning, search strategies, expert knowledge, metarules

论文评审过程:

论文官网地址:https://doi.org/10.1007/BF01014021