Multiclass SVM-RFE for product form feature selection

作者:

Highlights:

摘要

Various form features affect consumer preference regarding product design. It is, therefore, important that designers identify these critical form features to aid them in developing appealing products. However, the problems inherent in choosing product form features have not yet been intensively investigated. In this paper, an approach based on multiclass support vector machine recursive feature elimination (SVM-RFE) is proposed to streamline the selection of optimum product form features. First, a one-versus-one (OVO) multiclass fuzzy support vector machines (multiclass fuzzy SVM) model using a Gaussian kernel was constructed based on product samples from mobile phones. Second, an optimal training model parameter set was determined using two-step cross-validation. Finally, a multiclass SVM-RFE process was applied to select critical form features by either using overall ranking or class-specific ranking. The weight distribution of each iterative step can be used to analyze the relative importance of each of the form features. The results of our experiment show that the multiclass SVM-RFE process is not only very useful for identifying critical form features with minimum generalization errors but also can be used to select the smallest feature subset for building a prediction model with a given discrimination capability.

论文关键词:Feature selection,Multiclass support vector machines recursive feature elimination (SVM-RFE),Mobile phone design

论文评审过程:Available online 24 July 2007.

论文官网地址:https://doi.org/10.1016/j.eswa.2007.07.043