Multi-player alpha-beta pruning
作者:
Highlights:
•
摘要
We consider the generalization of minimax search with alpha-beta pruning to non-cooperative, perfect-information games with more than two players. The minimax algorithm was generalized in [2] to the maxn algorithm applied to vectors of n-tuples representing the evaluations for each of the players. If we assume an upper bound on the sum of the evaluations for each player, and a lower bound on each individual evaluation, then shallow alpha-beta pruning is possible, but not deep pruning. In the best case, the asymptotic branching factor is reduced to (1 + √4b − 3)2. In the average case, however, pruning does not reduce the asymptotic branching factor. Thus, alpha-beta pruning is found to be effective only in the special case of two-player games. In addition, we show that it is an optimal directional algorithm for two players.
论文关键词:
论文评审过程:Available online 25 February 2003.
论文官网地址:https://doi.org/10.1016/0004-3702(91)90082-U