Weighted and extended total variation for image restoration and decomposition

作者:

Highlights:

摘要

In various information processing tasks obtaining regularized versions of a noisy or corrupted image data is often a prerequisite for successful use of classical image analysis algorithms. Image restoration and decomposition methods need to be robust if they are to be useful in practice. In particular, this property has to be verified in engineering and scientific applications. By robustness, we mean that the performance of an algorithm should not be affected significantly by small deviations from the assumed model. In image processing, total variation (TV) is a powerful tool to increase robustness. In this paper, we define several concepts that are useful in robust restoration and robust decomposition. We propose two extended total variation models, weighted total variation (WTV) and extended total variation (ETV). We state generic approaches. The idea is to replace the TV penalty term with more general terms. The motivation is to increase the robustness of ROF (Rudin, Osher, Fatemi) model and to prevent the staircasing effect due to this method. Moreover, rewriting the non-convex sublinear regularizing terms as WTV, we provide a new approach to perform minimization via the well-known Chambolle's algorithm. The implementation is then more straightforward than the half-quadratic algorithm. The behavior of image decomposition methods is also a challenging problem, which is closely related to anisotropic diffusion. ETV leads to an anisotropic decomposition close to edges improving the robustness. It allows to respect desired geometric properties during the restoration, and to control more precisely the regularization process. We also discuss why compression algorithms can be an objective method to evaluate the image decomposition quality.

论文关键词:Convex and non-convex regularization,Texture decomposition,Chambolle's projection,Weighted total variation,Extended total variation

论文评审过程:Received 2 April 2009, Revised 15 October 2009, Accepted 17 October 2009, Available online 1 November 2009.

论文官网地址:https://doi.org/10.1016/j.patcog.2009.10.011