A complementary theory of light scattering by homogeneous spheres

作者:

Highlights:

摘要

A theory of the scattering of electromagnetic waves by homogeneous spheres, the so-called Mie theory, is presented in a unique and coherent manner in this paper. We begin with Maxwell's equations, from which the vector wave equations are derived and solved by means of the two orthogonal solutions to the scalar wave equation. The transverse incident electric field is mapped in spherical coordinates and expanded in known mathematical functions satisfying the scalar wave equation. Determination of the unknown coefficients in the scattered and internal fields is achieved by matching the electromagnetic boundary conditions on the surface of a sphere. Far-field solutions for the electric field are then given in terms of the scattering functions. Transformation of the electric field to the reference plane containing incident and scattered waves is carried out. Extinction parameters and the phase matrix are derived from the electric field perpendicular and parallel to the reference plane. On the basis of the independent-scattering assumption, the theory is extended to cases involving a sample of homogeneous spheres.

论文关键词:

论文评审过程:Available online 22 March 2002.

论文官网地址:https://doi.org/10.1016/0096-3003(77)90018-2