Regularity radius and real eigenvalue range

作者:

Highlights:

摘要

Let A(p) be a given (n×n) interval parametric matrix (the set of all (n×n) parametric matrices when the m-dimensional parameter vector p varies within a given interval vector p) whose entries depend affine linearly on p. Also, let L denote the set of all real eigenvalues of the bundle (A(p),B(p)). In this paper, first the concept of regularity radius r∗(A(p)) of the interval parametric matrix A(p) is introduced. It is then shown that there exists certain relationship between the problem of establishing if α∈R belongs to L or not and the numerical value of the regularity radius of the interval parametric matrix A(p)-αB(p). The results presented may be useful in designing a method for determining or assessing the set L.

论文关键词:Interval parametric matrix,Regularity radius,Generalized eigenvalue problem,Real eigenvalue range

论文评审过程:Available online 26 February 2014.

论文官网地址:https://doi.org/10.1016/j.amc.2014.01.113