Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow

作者:

Highlights:

摘要

The problem of coupling compressible viscous flow in free stream and a porous medium into one solver is addressed in this work. A single-domain compressible Darcy–Forchheimer model extended from the Navier–Stokes equation is developed for this purpose. The set of governing equations accounting for mass conservation and momentum and energy balance is first presented for the coupling method, followed by implementation details within a finite-volume framework. Steady numerical simulations focus on two classical problems: porous plug flow and the Beavers and Joseph problem. Both are successfully performed, demonstrating the feasibility and capability of this approach. An unsteady problem of flow over a square porous cylinder is then modeled; and results are compared with those from the existing literature, demonstrating the accuracy of the method for unsteady cases.

论文关键词:Porous–fluid coupling,Compressible solver,Finite volume,Porous square cylinder

论文评审过程:Received 27 March 2019, Accepted 4 August 2019, Available online 4 September 2019, Version of Record 4 September 2019.

论文官网地址:https://doi.org/10.1016/j.amc.2019.124682