Detecting shilling groups in online recommender systems based on graph convolutional network

作者:

Highlights:

摘要

Online recommender systems have been shown to be vulnerable to group shilling attacks in which attackers of a shilling group collaboratively inject fake profiles with the aim of increasing or decreasing the frequency that particular items are recommended. Existing detection methods mainly use the frequent itemset (dense subgraph) mining or clustering method to generate candidate groups and then utilize the hand-crafted features to identify shilling groups. However, such two-stage detection methods have two limitations. On the one hand, due to the sensitivity of support threshold or clustering parameters setting, it is difficult to guarantee the quality of candidate groups generated. On the other hand, they all rely on manual feature engineering to extract detection features, which is costly and time-consuming. To address these two limitations, we present a shilling group detection method based on graph convolutional network. First, we model the given dataset as a graph by treating users as nodes and co-rating relations between users as edges. By assigning edge weights and filtering normal user relations, we obtain the suspicious user relation graph. Second, we use principal component analysis to refine the rating features of users and obtain the user feature matrix. Third, we design a three-layer graph convolutional network model with a neighbor filtering mechanism and perform user classification by combining both structure and rating features of users. Finally, we detect shilling groups through identifying target items rated by the attackers according to the user classification results. Extensive experiments show that the classification accuracy and detection performance (F1-measure) of the proposed method can reach 98.92% and 99.92% on the Netflix dataset and 93.18% and 92.41% on the Amazon dataset.

论文关键词:Recommender systems,Group shilling attacks,Graph convolutional network,Target item identification

论文评审过程:Received 14 November 2021, Revised 30 April 2022, Accepted 13 July 2022, Available online 2 August 2022, Version of Record 2 August 2022.

论文官网地址:https://doi.org/10.1016/j.ipm.2022.103031