Generalized polynomials, operational identities and their applications

作者:

Highlights:

摘要

It is shown that an appropriate combination of methods, relevant to generalized operational calculus and to special functions, can be a very useful tool to treat a large body of problems both in physics and mathematics. We discuss operational methods associated with multivariable Hermite, Laguerre, Legendre, and other polynomials to derive a wealth of identities useful in quantum mechanics, electromagnetism, optics, etc., or to derive new identities between special functions as, e.g., Mehler- or mixed-type generating functions.

论文关键词:33C65,Operational calculus,Special functions,Classical orthogonal polynomials

论文评审过程:Received 2 July 1999, Revised 29 September 1999, Available online 26 May 2000.

论文官网地址:https://doi.org/10.1016/S0377-0427(00)00283-1