The N-widths of spaces of holomorphic functions on bounded symmetric domains, II
作者:
Highlights:
•
摘要
Let D be a bounded symmetric domain and Σ be the Shilov boundary of D. For λ∈W, the Wallach set, and a nonnegative integer l, we study the weighted Bergman space Aλ2(D) and the weighted Bergman–Sobolev space A2,λ,l(D). For 0<ρ<1 we obtain exact values of the Gel'fand and linear N-widths of A2,λ,l(D) in C(ρΣ). We also obtain the Bernstein N-widths of the Hardy–Sobolev space H∞,l(D) in Aλ2(ρD).
论文关键词:primary 41A46,43A85,secondary 43A90,Jordan pair,Bounded symmetric domain,Shilov boundary,Symmetric cone,Weighted Bergman space,Bergman space,Hardy space,Radial derivative,Reproducing kernel,N-widths
论文评审过程:Received 1 February 2001, Revised 3 June 2001, Available online 31 October 2001.
论文官网地址:https://doi.org/10.1016/S0377-0427(01)00558-1