Bi-frames with 4-fold axial symmetry for quadrilateral surface multiresolution processing

作者:

Highlights:

摘要

When bivariate filter banks and wavelets are used for surface multiresolution processing, it is required that the decomposition and reconstruction algorithms for regular vertices derived from them have high symmetry. This symmetry requirement makes it possible to design the corresponding multiresolution algorithms for extraordinary vertices. Recently lifting-scheme based biorthogonal bivariate wavelets with high symmetry have been constructed for surface multiresolution processing. If biorthogonal wavelets have certain smoothness, then the analysis or synthesis scaling function or both have big supports in general. In particular, when the synthesis low-pass filter is a commonly used scheme such as Loop’s scheme or Catmull–Clark’s scheme, the corresponding analysis low-pass filter has a big support and the corresponding analysis scaling function and wavelets have poor smoothness. Big supports of scaling functions, or in other words big templates of multiresolution algorithms, are undesirable for surface processing. On the other hand, a frame provides flexibility for the construction of “basis” systems. This paper concerns the construction of wavelet (or affine) bi-frames with high symmetry.In this paper we study the construction of wavelet bi-frames with 4-fold symmetry for quadrilateral surface multiresolution processing, with both the dyadic and 2 refinements considered. The constructed bi-frames have 4 framelets (or frame generators) for the dyadic refinement, and 2 framelets for the 2 refinement. Namely, with either the dyadic or 2 refinement, a frame system constructed in this paper has only one more generator than a wavelet system. The constructed bi-frames have better smoothness and smaller supports than biorthogonal wavelets. Furthermore, all the frame algorithms considered in this paper are given by templates so that one can easily implement them.

论文关键词:42C40,65T60,68U07,65D17,Wavelet bi-frames,Affine bi-frames,Wavelet dual-frames,Dyadic refinement,2 refinement,4-fold axial symmetry,Lifting scheme,Quadrilateral surface multiresolution processing,Multiresolution algorithm templates

论文评审过程:Received 11 September 2009, Revised 22 April 2010, Available online 10 May 2010.

论文官网地址:https://doi.org/10.1016/j.cam.2010.04.029