A Lax equivalence theorem for stochastic differential equations
作者:
Highlights:
•
摘要
In this paper, a stochastic mean square version of Lax’s equivalence theorem for Hilbert space valued stochastic differential equations with additive and multiplicative noise is proved. Definitions for consistency, stability, and convergence in mean square of an approximation of a stochastic differential equation are given and it is shown that these notions imply similar results as those known for approximations of deterministic partial differential equations. Examples show that the assumptions made are met by standard approximations.
论文关键词:60G60,60H15,60H35,65C30,65C05,Stochastic partial differential equations,Lax equivalence theorem,Numerical approximation,Consistency,Stability,Convergence
论文评审过程:Received 20 August 2009, Revised 30 April 2010, Available online 12 May 2010.
论文官网地址:https://doi.org/10.1016/j.cam.2010.05.001