Pythagorean hodograph spline spirals that match G3 Hermite data from circles
作者:
Highlights:
•
摘要
A construction is given for a G3 piecewise rational Pythagorean hodograph convex spiral which interpolates two G3 Hermite data associated with two non-concentric circles, one being inside the other. The spiral solution is of degree 7 and is the involute of a G2 convex curve, referred to as the evolute solution, with prescribed length, and composed of two PH quartic curves. Conditions for G3 continuous contact with circles are then studied and it turns out that an ordinary cusp at each end of the evolute solution is required. Thus, geometric properties of a family of PH polynomial quartics, allowing to generate such an ordinary cusp at one end, are studied. Finally, a constructive algorithm is described with illustrative examples.
论文关键词:G3 Hermite interpolation,Rational spiral,PH curves,Path planning,Highway designing
论文评审过程:Received 28 January 2014, Revised 9 October 2014, Available online 18 October 2014.
论文官网地址:https://doi.org/10.1016/j.cam.2014.10.005