Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements

作者:

Highlights:

摘要

We consider a two-stage numerical procedure for imaging of objects buried in dry sand using time-dependent backscattering experimental radar measurements. These measurements are generated by a single point source of electric pulses and are collected using a microwave scattering facility which was built at the University of North Carolina at Charlotte. Our imaging problem is formulated as the inverse problem of the reconstruction of the spatially distributed dielectric constant εr(x),x∈R3, which is an unknown coefficient in Maxwell’s equations.On the first stage the globally convergent method of Beilina and Klibanov (2012) is applied to get a good first approximation for the exact solution. Results of this stage were presented in Thành et al. (2014). On the second stage the locally convergent adaptive finite element method of Beilina (2011) is applied to refine the solution obtained on the first stage. The two-stage numerical procedure results in accurate imaging of all three components of interest of targets: shapes, locations and refractive indices. In this paper we briefly describe methods and present new reconstruction results for both stages.

论文关键词:Inverse scattering,Refractive indices,Globally convergent algorithm,Adaptive finite element method

论文评审过程:Received 29 August 2014, Revised 10 November 2014, Available online 7 December 2014, Version of Record 27 May 2015.

论文官网地址:https://doi.org/10.1016/j.cam.2014.11.055