Frequent subgraph mining in outerplanar graphs

作者:Tamás Horváth, Jan Ramon, Stefan Wrobel

摘要

In recent years there has been an increased interest in frequent pattern discovery in large databases of graph structured objects. While the frequent connected subgraph mining problem for tree datasets can be solved in incremental polynomial time, it becomes intractable for arbitrary graph databases. Existing approaches have therefore resorted to various heuristic strategies and restrictions of the search space, but have not identified a practically relevant tractable graph class beyond trees. In this paper, we consider the class of outerplanar graphs, a strict generalization of trees, develop a frequent subgraph mining algorithm for outerplanar graphs, and show that it works in incremental polynomial time for the practically relevant subclass of well-behaved outerplanar graphs, i.e., which have only polynomially many simple cycles. We evaluate the algorithm empirically on chemo- and bioinformatics applications.

论文关键词:Graph mining, Frequent pattern mining, Algorithms, Complexity, Applications

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10618-009-0162-1