Extreme-value-theoretic estimation of local intrinsic dimensionality

作者:Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E. Houle, Ken-ichi Kawarabayashi, Michael Nett

摘要

This paper is concerned with the estimation of a local measure of intrinsic dimensionality (ID) recently proposed by Houle. The local model can be regarded as an extension of Karger and Ruhl’s expansion dimension to a statistical setting in which the distribution of distances to a query point is modeled in terms of a continuous random variable. This form of intrinsic dimensionality can be particularly useful in search, classification, outlier detection, and other contexts in machine learning, databases, and data mining, as it has been shown to be equivalent to a measure of the discriminative power of similarity functions. Several estimators of local ID are proposed and analyzed based on extreme value theory, using maximum likelihood estimation, the method of moments, probability weighted moments, and regularly varying functions. An experimental evaluation is also provided, using both real and artificial data.

论文关键词:Intrinsic dimension, Indiscriminability, Manifold learning, Curse of dimensionality, Maximum likelihood estimation, Extreme value theory

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10618-018-0578-6