TSK-Streams: learning TSK fuzzy systems for regression on data streams
作者:Ammar Shaker, Eyke Hüllermeier
摘要
The problem of adaptive learning from evolving and possibly non-stationary data streams has attracted a lot of interest in machine learning in the recent past, and also stimulated research in related fields, such as computational intelligence and fuzzy systems. In particular, several rule-based methods for the incremental induction of regression models have been proposed. In this paper, we develop a method that combines the strengths of two existing approaches rooted in different learning paradigms. More concretely, our method adopts basic principles of the state-of-the-art learning algorithm AMRules and enriches them by the representational advantages of fuzzy rules. In a comprehensive experimental study, TSK-Streams is shown to be highly competitive in terms of performance.
论文关键词:Fuzzy rules, TSK systems, Evolving fuzzy systems, Machine learning, Data streams
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10618-021-00769-1