Cost-sensitive ensemble learning: a unifying framework

作者:George Petrides, Wouter Verbeke

摘要

Over the years, a plethora of cost-sensitive methods have been proposed for learning on data when different types of misclassification errors incur different costs. Our contribution is a unifying framework that provides a comprehensive and insightful overview on cost-sensitive ensemble methods, pinpointing their differences and similarities via a fine-grained categorization. Our framework contains natural extensions and generalisations of ideas across methods, be it AdaBoost, Bagging or Random Forest, and as a result not only yields all methods known to date but also some not previously considered.

论文关键词:Cost-sensitive learning, Class imbalance, Classification, Misclassification cost

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10618-021-00790-4