On the relationship between the structural and socioacademic communities of a coauthorship network
作者:
Highlights:
•
摘要
This article presents a study that compares detected structural communities in a coauthorship network to the socioacademic characteristics of the scholars that compose the network. The coauthorship network was created from the bibliographic record of a multi-institution, interdisciplinary research group focused on the study of sensor networks and wireless communication. Four different community detection algorithms were employed to assign a structural community to each scholar in the network: leading eigenvector, walktrap, edge betweenness and spinglass. Socioacademic characteristics were gathered from the scholars and include such information as their academic department, academic affiliation, country of origin, and academic position. A Pearson’s χ2test, with a simulated Monte Carlo, revealed that structural communities best represent groupings of individuals working in the same academic department and at the same institution. A generalization of this result suggests that, even in interdisciplinary, multi-institutional research groups, coauthorship is primarily driven by departmental and institutional affiliation.
论文关键词:Social networks,Structures and organization in human complex systems,Community detection,Collaboration patterns
论文评审过程:Received 16 January 2008, Revised 5 April 2008, Accepted 7 April 2008, Available online 21 May 2008.
论文官网地址:https://doi.org/10.1016/j.joi.2008.04.002