An extended EM algorithm for subspace clustering

作者:Lifei Chen, Qingshan Jiang

摘要

Clustering high dimensional data has become a challenge in data mining due to the curse of dimensionality. To solve this problem, subspace clustering has been defined as an extension of traditional clustering that seeks to find clusters in subspaces spanned by different combinations of dimensions within a dataset. This paper presents a new subspace clustering algorithm that calculates the local feature weights automatically in an EM-based clustering process. In the algorithm, the features are locally weighted by using a new unsupervised weighting method, as a means to minimize a proposed clustering criterion that takes into account both the average intra-clusters compactness and the average inter-clusters separation for subspace clustering. For the purposes of capturing accurate subspace information, an additional outlier detection process is presented to identify the possible local outliers of subspace clusters, and is embedded between the E-step and M-step of the algorithm. The method has been evaluated in clustering real-world gene expression data and high dimensional artificial data with outliers, and the experimental results have shown its effectiveness.

论文关键词:high dimensional clustering, subspace clustering, clustering criterion, outlier detection, EM algorithm

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11704-008-0007-x