SWE-bench 大模型得分排行榜
数据来源:DataLearnerAI
SWE-bench详细排名数据表格
排名
模型
得分
发布时间
参数(亿)
随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。
不同模式会显著影响成绩,请在对比榜单时留意标签提示。
提示:若某条记录未显示任何标签,即默认是 normal 常规模式。
常规推理:单步推理,不延长思考、也不调用额外工具。
Thinking 系列:常规延长思考时间,low/medium/high 代表不同耗时或深度,各厂商叫法不同。
Deeper thinking:在 Thinking 基础上进一步延长思考链条,通常意味着更多算力与时间。
允许调用检索、浏览器、代码解释器等外部能力。
并行思考:多线程/多代理协同探索再汇总,通常只在厂商内部实验环境中启用、尚未对外开放,因此被视为“作弊”模式。
数据来源:DataLearnerAI