SimpleVQA 大模型得分排行榜
数据来源:DataLearnerAI
随着多模态大语言模型(MLLM)在各个领域的应用日益广泛,一个核心问题浮出水面:我们如何信赖它们生成内容的准确性?当模型需要结合图像和文本进行问答时,其回答是否基于事实,还是仅仅是“看似合理”的幻觉?为了应对这一挑战,一个名为SimpleVQA的新型评测基准应运而生,旨在为多模态模型的事实性能力提供一个清晰、可量化的度量衡。
不同模式会显著影响成绩,请在对比榜单时留意标签提示。
提示:若某条记录未显示任何标签,即默认是 normal 常规模式。
常规推理:单步推理,不延长思考、也不调用额外工具。
Thinking 系列:常规延长思考时间,low/medium/high 代表不同耗时或深度,各厂商叫法不同。
Deeper thinking:在 Thinking 基础上进一步延长思考链条,通常意味着更多算力与时间。
允许调用检索、浏览器、代码解释器等外部能力。
并行思考:多线程/多代理协同探索再汇总,通常只在厂商内部实验环境中启用、尚未对外开放,因此被视为“作弊”模式。
数据来源:DataLearnerAI