DataLearner 标志DataLearnerAI
最新AI资讯
大模型评测
大模型列表
大模型对比
资源中心
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:交替思考
标签

「交替思考」相关文章

汇总「交替思考」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#交替思考
你的MiniMax M2模型效果为什么不好?可能是用错了,官方建议正确使用Interleaved Thinking,模型效果最多可提升35%的效果

你的MiniMax M2模型效果为什么不好?可能是用错了,官方建议正确使用Interleaved Thinking,模型效果最多可提升35%的效果

MiniMax M2发布2周后已经成为OpenRouter上模型tokens使用最多的模型之一。已经成为另一个DeepSeek现象的大模型了。然而,实际使用中,很多人反馈说模型效果并不好。而此时,官方也下场了,说当前大家使用MiniMax M2效果不好的一个很重要的原因是没有正确使用Interleaved Thinking。正确使用Interleaved thinking模式,可以让MiniMax M2模型的效果最多可以提升35%!本文我们主要简单聊聊这个Interleaved thinking。

2025/11/05 22:34:28592
#InterleavedThinking#MiniMaxM2

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • Stable Diffusion的最新实现——KerasCV的官方实现!
  • 开源界最新力作!230万篇arXiv的论文标题和摘要的所有embeddings向量数据集免费开放!
  • Clawdbot到底是啥?能做什么?可以替代Claude Cowork吗?我花了 40 小时深扒 Clawdbot:全是干货,包括那些他们没告诉你的真相
  • Android开发入门基础知识——Intent详解
  • 手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署
  • OpenAI发布GPT-5.1:围绕“对话体验、一致性、任务适配性”进行的系统化优化的实质性升级!重回写作排名第一!
  • Hadoop(一)-HDFS
  • Google开源第三代Gemma-3系列模型:支持多模态、最多128K输入,其中Gemma 3-27B在大模型匿名竞技场得分超过了Qwen2.5-Max