DataLearner 标志DataLearnerAI
最新AI资讯
大模型评测
大模型列表
大模型对比
资源中心
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:rag
标签

「rag」相关文章

汇总「rag」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#rag
如何评估向量大模型在多种任务上的表现?Massive Text Embedding Benchmark(MTEB)评测介绍

如何评估向量大模型在多种任务上的表现?Massive Text Embedding Benchmark(MTEB)评测介绍

MTEB是一个用于评估向量大模型向量化准确性的评测排行榜。它全称为Massive Text Embedding Benchmark,是一个旨在衡量文本嵌入模型在多种任务上表现的基准测试。

2025/07/15 18:48:21318
#MTEB#RAG评测
如何对向量大模型(embedding models)进行微调?几行代码实现相关原理

如何对向量大模型(embedding models)进行微调?几行代码实现相关原理

大语言模型是通过收集少量专门数据对模型的部分权重进行更新后得到一个比通用模型更加专业的模型。但是,当前大家讨论较多的都是语言模型的微调,对于嵌入模型(或者向量大模型)的微调讨论较少。Modal团队的工作人员发布了一个博客,详细介绍了向量大模型的微调工作,本文将其翻译之后提供给大家(原文:https://modal.com/blog/fine-tuning-embeddings )。

2024/07/21 17:08:453,321
#bge#RAG
开源模型进展迅猛!最新开源不可商用模型Command R+在大模型匿名投票得分上已经超过GPT-4-Turbo!

开源模型进展迅猛!最新开源不可商用模型Command R+在大模型匿名投票得分上已经超过GPT-4-Turbo!

开源大语言模型经过一年多的发展,终于有一个模型可以在权威榜单上击败GPT-4的较早的版本,这就是CohereAI企业开源的Command R+。这是一个开源但是不允许商用的模型,参数规模达到1040亿,也是目前为止开源参数规模最大的一个模型。

2024/04/09 20:35:231,803
#CohereAI#CommandR
ToolTalk:微软发布的一个用以评测大语言模型工具使用能力的评测工具和评测数据集

ToolTalk:微软发布的一个用以评测大语言模型工具使用能力的评测工具和评测数据集

为了更好地评估大语言模型的工具使用能力,微软的研究人员提出了ToolTalk Benchmark基准测试工具,可以帮助我们更加简单地理解大语言模型在工具使用方面的水准。ToolTalk旨在评估大型语言模型(LLMs)在对话环境中使用工具的能力。这些工具可以是搜索引擎、计算器或Web API等,它们能够帮助LLMs访问私有或最新的信息,并代表用户执行操作。

2024/04/05 21:42:10856
#RAG#ToolTalk
基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果

基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果

基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。

2023/11/08 20:10:293,577
#RAG#reranker
检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?

检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?

检索增强生成(Retrieval-augmented Generation,RAG)是一种结合了检索和大模型生成的方法。它从一个大型知识库中检索与输入相关的信息,然后利用这些信息作为上下文和问题一起输入给大语言模型,并让大语言模型基于这些信息生成答案的方式。检索增强生成可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,但是,如果文档切分有问题、检索不准确,结果也是不好的。

2023/10/27 11:46:081,453
#RAG#向量检索增强生成
检索增强生成(RAG)方法有哪些提升效果的手段:LangChain在RAG功能上的一些高级能力总结

检索增强生成(RAG)方法有哪些提升效果的手段:LangChain在RAG功能上的一些高级能力总结

检索增强生成(Retrieval-augmented Generation,RAG)可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,如果文档切分有问题、检索不准确,结果也是不好的。而检索增强生成也有一些提升方法,本文基于LangChain提供的一些方法给大家总结一下。

2023/10/27 11:45:434,273
#RAG#查询重写
LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!

LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!

检索增强生成(Retrieval-augmented generation,RAG)是一种将外部知识检索与大型语言模型生成相结合的方法,通常用于问答系统。当前使用大模型基于外部知识检索结果进行问答是当前大模型与外部知识结合最典型的方式,也是检索增强生成最新的应用。然而,近期的研究表明,这种方式并不总是最佳选择,特别是当检索到的文档数量较多时,这种方式很容易出现回答不准确的情况。为此,LangChain最新推出了LongContextReorder,推出了一种新思路解决这个问题。

2023/09/17 22:46:444,181
#LangChain#LongContextReorder

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 机器学习中MCMC方法介绍
  • Dask的本地集群配置和编程
  • 大模型可以运营自动售货机吗?Anthropic的Project Vend实验:Claude能成功经营一家小店吗?答案是亏损严重还会免费赠送商品!
  • MySQL启用中文全文检索功能
  • Aider Benchmark:面向代码编辑的大模型评测基准全解析
  • 谷歌提出最新的基于规则和机器学习混合的代码补全方法
  • 重磅!ChatGLM2-6B免费商用了~
强烈推荐斯坦福大学的深度学习示意图网站