大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
检索增强生成(Retrieval-augmented Generation,RAG)是一种结合了检索和大模型生成的方法。它从一个大型知识库中检索与输入相关的信息,然后利用这些信息作为上下文和问题一起输入给大语言模型,并让大语言模型基于这些信息生成答案的方式。检索增强生成可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,但是,如果文档切分有问题、检索不准确,结果也是不好的。
DeepSeekAI开源国产第一个基于混合专家技术的大模型:DeepSeekMoE-16B,未来还有1450亿参数的MoE大模型
深度学习中为什么要使用Batch Normalization
CohereAI开源了2个Aya Vision多模态大模型:80亿和320亿两种规格多模态大模型,评测结果超越Qwen2.5 72B和Llama 3.2 90B,支持23种语言
需要多少GPU显存才能运行预训练大语言模型?大语言模型参数规模与显存大小的关系估算方法~
大模型泛化能力详解:大模型泛化能力分类、泛化能力来源和泛化研究的方向