标签:#RAG##reranker##检索增强生成##重排序# 时间:2023/11/08 20:10:29 作者:小木
如何让大语言模型(Large Language Model,LLM)发挥最大的性能?来自OpenAI的微调产品的工程主管人员的经验分享
检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?
检索增强生成(RAG)方法有哪些提升效果的手段:LangChain在RAG功能上的一些高级能力总结
LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!
让大模型支持更长的上下文的方法哪个更好?训练支持更长上下文的模型还是基于检索增强?
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
回归模型中的交互项简介(Interactions in Regression)
贝塔分布(Beta Distribution)简介及其应用
矩母函数简介(Moment-generating function)
使用R语言进行K-means聚类并分析结果
普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
H5文件简介和使用
深度学习技巧之Early Stopping(早停法)
Wishart分布简介
最小二乘法(Least Squares)详细介绍