让大模型支持更长的上下文的方法哪个更好?训练支持更长上下文的模型还是基于检索增强?
在大语言模型中,上下文长度是指模型可以考虑的输入数据的数量。更长的上下文在大语言模型的实际应用中有非常重要的价值。当前,让大语言模型支持更长的上下文有两种常用的方法,一种是训练支持更长上下文长度的模型,扩展模型的输入,另外一种是检索增强生成的方法(Retrieval Augmentation Generation,RAG)。但二者应该如何选择,这是一个很少能直接比较的问题。为此,英伟达(Nvidia)的研究人员做了一个详细的比较。


