大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Dirichlet过程是一个随机过程,在非参数贝叶斯模型中有广泛运用,最常见的应用是Dirichlet过程混合模型
这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同时使用总体分布将参数的依赖结构化,从而避免过拟合问题。
MistralAI的混合专家大模型Mistral-7B×8-MoE详细介绍,效果超过LLaMA2-70B和GPT-3.5,推理速度快6倍
如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~
如何用7.7亿参数的蒸馏模型超过5400亿的大语言模型——Google提出新的模型蒸馏方法:逐步蒸馏(Distilling step-by-step)详解
当前业界最优秀的8个编程大模型简介:从最早的DeepMind的AlphaCode到最新的StarCoder全解析~
深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?
Indian Buffet Process(印度自助餐过程)介绍
Python入门的基本概念之包管理——pip与conda的简介对比
正则化和数据增强对模型的影响并不总是好的:The Effects of Regularization and Data Augmentation are Class Dependent