DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: 图像生成大模型
Tag

Articles tagged "图像生成大模型"

A curated list of original AI and LLM articles related to "图像生成大模型", updated regularly.

Tags:#图像生成大模型
如何让Nano Banana Pro生成更好的图片?Nano Banana Pro 提示词写作官方教程

如何让Nano Banana Pro生成更好的图片?Nano Banana Pro 提示词写作官方教程

Google 最新推出的 Nano Banana Pro(Gemini 3 Pro Image) 不只是一次“图像质量提升”,而是让普通用户也能借助专业级提示词,生成具备排版、构图、品牌、摄影语言的作品。 在这个版本中,最关键的能力不是模型本身,而是: 它对结构化、专业化 Prompt 的响应能力非常强。 写对提示词,效果天差地别。 本文将完全聚焦于: 怎么写提示词,才能让 Nano Banana Pro 生出最好的图。

2025/11/21 01:21:06489
#Google#NanoBanana
重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!

重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!

就在刚才,谷歌推出了 Nano Banana Pro(Gemini 3 Pro Image)。这是基于 Gemini 3 Pro 打造的专业级图像生成与编辑模型,相比几个月前的 Nano Banana,这次升级几乎重构了谷歌图像生成能力的上限。从文本渲染、多图一致性,到世界知识、摄影级控制和信息可视化,Nano Banana Pro 在多个维度显著拉开了与上一代、乃至整个行业同类产品的差距。

2025/11/21 00:52:53604
#Google#NanoBanana
断层领先!Google发布图像生成和编辑大模型Gemini 2.5 Flash Image Preview,火爆网络的Nano Banana背后真正的模型发布!

断层领先!Google发布图像生成和编辑大模型Gemini 2.5 Flash Image Preview,火爆网络的Nano Banana背后真正的模型发布!

就在刚才,Google宣布发布最新的图像生成和编辑大模型Gemini 2.5 Flash Image Preview。该模型就是最近火爆网络的Nana Banana背后真正的模型。该模型在图片生成和编辑方面目前是断层领先,效果非常好。

2025/08/27 01:22:47480
#Gemini2.5FlashImage#图像生成大模型

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Hot Blogs

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

Today's Picks

  • 重磅好消息!推特开源自家的推荐系统算法!
  • ClawdBot:最新火爆网络的AI的桌面助手简介
  • [翻译]应用到文本领域的卷积方法
  • MetaGPT技术全解析:另一个AutoGPT,一个可以替代小型软件开发团队的配备齐全的软件开发GPT,产品经理、系统设计、代码实现一条龙
  • 在 API 和 ChatGPT 之间迷路?GPT-5.1、GPT-5.1-Chat、GPT-5.1 Instant 的真正区别解释(DataLearnerAI)
  • KerasCV——一个新的简单易用的计算机视觉(CV)算法库
  • Anthropic发布Claude3.5-Sonnet模型,超过Claude3系列所有模型的能力,并且支持多模态!
  • 编程语言(Programming Language)、汇编语言(Assembly Language, ASM)、机器语言(Machine Language/Code)的区别和简介