DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
Original Blog

Original AI Tech Blogs

Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

Sort by
Moltbook 是什么?一个专为 AI Agent 或者说是 OpenClaw(前身为 Clawdbot 或 Moltbot)设计的社交网络,以及最有趣的讨论案例收集

Moltbook 是什么?一个专为 AI Agent 或者说是 OpenClaw(前身为 Clawdbot 或 Moltbot)设计的社交网络,以及最有趣的讨论案例收集

Moltbook 是一个创新的社交网络平台,专为 AI Agent 设计,在这里它们可以分享内容、参与讨论,并进行投票和点赞活动。人类用户仅限于观察者角色,无法直接互动。这个平台类似于 Reddit 的结构,允许 AI Agent 创建子社区(称为 submolt)、发布帖子、评论,并通过 API 接口进行操作,而不是视觉图形界面。

2026/01/31 16:36:16136
#AIAgent#Clawdbot#Moltbook
AI编码领域的转变:Karpathy的2026年反思与Boris Cherny的Claude Code团队回应

AI编码领域的转变:Karpathy的2026年反思与Boris Cherny的Claude Code团队回应

Andrej Karpathy预测2026年AI将主导软件编码工作流,带来巨大效率提升,但可能引发低质代码泛滥(slopacolypse)。Anthropic的Boris Cherny以Claude Code团队实践回应,展示近100% AI生成代码、通用工程师招聘策略,以及通过模型迭代有效控制质量问题。

2026/01/29 08:47:1449
#AIAgent#AndrejKarpathy#Boris
重磅!Kimi K2.5发布,依然免费开源!原生多模态MoE架构,全球最大规模参数的开源模型之一,官方评测结果比肩诸多闭源模型!可以驱动100个子Agent执行!

重磅!Kimi K2.5发布,依然免费开源!原生多模态MoE架构,全球最大规模参数的开源模型之一,官方评测结果比肩诸多闭源模型!可以驱动100个子Agent执行!

2026年1月27日,月之暗面(Moonshot AI)发布新一代模型Kimi K2.5。根据官方说明,这是Kimi K2的后续版本,目前已通过Kimi.com网页端和App向用户推送。该模型同步上线Kimi API开放平台及编程助手Kimi Code,模型权重与相关代码也在Hugging Face开源。

2026/01/27 17:27:05214
#K2#K2.5#Kimi
看特斯拉前AI总监、OpenAI前知名研究员Andrej Karpathy如何看AI大模型编程(Claude Code这样的工具):AI Agent正在重塑编码工作流,2026年的软件工程大变革

看特斯拉前AI总监、OpenAI前知名研究员Andrej Karpathy如何看AI大模型编程(Claude Code这样的工具):AI Agent正在重塑编码工作流,2026年的软件工程大变革

本文整理了 Andrej Karpathy 在 2025 年底关于 AI Agent 编程的核心观点。基于其使用 Claude Code 等大模型的真实工程经验,Karpathy 认为软件工程正从“手动编码”转向“由 AI Agent 执行、人类定义目标与约束”的新范式。文章同时分析了 AI Agent 在效率提升之外带来的工程风险、技能退化与内容质量问题,并指出 2026 年将是行业系统性消化 AI Agent 能力的关键一年。

2026/01/27 08:49:43171
#AIAgent#AndrejKarpathy#ClaudeCode
Clawdbot到底是啥?能做什么?可以替代Claude Cowork吗?我花了 40 小时深扒 Clawdbot:全是干货,包括那些他们没告诉你的真相

Clawdbot到底是啥?能做什么?可以替代Claude Cowork吗?我花了 40 小时深扒 Clawdbot:全是干货,包括那些他们没告诉你的真相

最近这几天,如果你的 X (Twitter) 首页被 Clawdbot 刷屏了,不用惊讶,主要是太火了。但是这个软件的使用有一定门槛,而且争议比较大。X上有一位博主分享了他对这个东西的看法和使用经验,挺详细的,对于想了解Clawdbot是啥的,这个文章不错。大家看也可以从这个文章看到Clawdbot能做什么,和Cowork对比有啥优点和缺点

2026/01/26 13:21:32763
#Clawdbot#Cowork#大模型助手
ClawdBot:最新火爆网络的AI的桌面助手简介

ClawdBot:最新火爆网络的AI的桌面助手简介

ClawdBot 是一款开源AI代理工具,旨在帮助用户在本地设备上处理各种任务,在科技社区中迅速获得关注。它于2025年底由开发者Peter Steinberger(@steipete)推出,基于Anthropic的Claude模型,名称结合了“Claw”(龙虾钳子)和“Claude”,并以龙虾作为吉祥物,象征其适应性和本地运行特性。该工具强调本地优先的设计,用户可以完全控制数据和过程,避免对云服务的依赖。

2026/01/25 23:03:49164
#AI助手#ClawdBot#Cowork
知名开源框架MetaGPT升级为Atoms:专注解决大模型时代的Vibe Coding产品如何落地,五分钟想好Idea,五分钟生成App,五分钟接入支付,五分钟部署产品

知名开源框架MetaGPT升级为Atoms:专注解决大模型时代的Vibe Coding产品如何落地,五分钟想好Idea,五分钟生成App,五分钟接入支付,五分钟部署产品

2026 年 1 月初,原名 MetaGPT 的 AI 开发框架完成了一次重大升级,将其核心产品 MGX 正式更名为 Atoms。这一消息由 DeepWisdom 团队在 X(原 Twitter)等平台发布,标志着该项目从单纯的“AI 编程助手”正式转向“AI 构建真实生意”的全新定位。

2026/01/25 22:51:18161
#Atoms#MetaGPT#MGX
阿里通义千问团队首次开源语音合成大模型:Qwen3-TTS:总共5个模型,最小的仅0.6B参数规模,最大1.8B参数

阿里通义千问团队首次开源语音合成大模型:Qwen3-TTS:总共5个模型,最小的仅0.6B参数规模,最大1.8B参数

就在刚刚,阿里开源了全新的语音合成大模型Qwen3-TTS系列!本次开源的语音合成模型共5个版本,最小的仅0.6B参数规模,最大的模型参数也就1.7B,基本上手机端都可以运行。此次发布不仅在性能上宣称超越了许多商业级闭源模型(如 OpenAI 的 GPT-4o-Audio 和 ElevenLabs),更重要的这应该是阿里通义千问团队首次开源语音合成系列大模型。

2026/01/22 22:22:53275
#Qwen#Qwen3-TTS#语音克隆
Cursor 疯狂实验:用 GPT-5.2 花了一个星期在 Cursor 中开发了一个300万行代码的浏览器以及Claude Opus与GPT-5.2、GPT-5.2-Codex模型在Vibe Coding方面有什么差异

Cursor 疯狂实验:用 GPT-5.2 花了一个星期在 Cursor 中开发了一个300万行代码的浏览器以及Claude Opus与GPT-5.2、GPT-5.2-Codex模型在Vibe Coding方面有什么差异

就在大家还在争论 AI 编程上限的时候,Cursor 团队发布了一份非常值得大家关注的内部测试报告,展示了当我们将 Agent 的规模和运行时间推向极致时,会发生什么。这不仅仅是简单的代码生成,而是让 AI 像人类团队一样协作,构建百万行级别的项目。这项实验为我们揭示了 AI 在编码领域的潜力与局限,值得每位开发者关注。

2026/01/16 08:26:10339
#AIIDE#Cursor#VibeCoding
Anthropic 发布 Cowork:从 Claude Code 的发展历史看 Cowork 的能力与定位,它可能成为普通人的下一代桌面 AI 助手吗?

Anthropic 发布 Cowork:从 Claude Code 的发展历史看 Cowork 的能力与定位,它可能成为普通人的下一代桌面 AI 助手吗?

Anthropic 于 2026 年 1 月 12 日发布了 Cowork,这是一款基于 Claude 模型的新型 AI Agent工具,作为 Claude 桌面应用的 macOS 版本研究预览版推出。目前仅限 Claude Max 订阅者使用,未来计划扩展到 Windows 和跨设备同步。Cowork 继承了 Claude Code 的核心代理能力,但更注重非开发者用户的日常生产力任务,例如访问用户指定的文件夹,读取、编辑或创建文件,帮助整理杂乱下载、从截图生成电子表格,或从笔记起草报告。

2026/01/13 22:46:49271
#Anthropic#ClaudeCode#Cowork
MMEB:多模态嵌入基准评测,用于测试多模态向量检索和排序准确性的基准

MMEB:多模态嵌入基准评测,用于测试多模态向量检索和排序准确性的基准

MMEB(Massive Multimodal Embedding Benchmark)是一个用于评估多模态嵌入模型的基准测试框架。该基准最初聚焦于图像-文本嵌入,并在后续版本中扩展到文本、图像、视频和视觉文档输入。MMEB通过收集多样化数据集,提供一个统一的评估平台,用于测试模型在分类、检索和其他任务上的性能。

2026/01/09 09:43:40232
#多模态嵌入评测#大模型评测#大模型评测基准
重磅!阿里开源2个多模态向量大模型和重排序大模型:Qwen3-VL-Embedding和Qwen3-VL-Reranker,图片和视频也可以用来做RAG了!

重磅!阿里开源2个多模态向量大模型和重排序大模型:Qwen3-VL-Embedding和Qwen3-VL-Reranker,图片和视频也可以用来做RAG了!

就在刚刚,阿里巴巴正式免费开源了两款全新的多模态模型——Qwen3-VL-Embedding(多模态向量模型)和 Qwen3-VL-Reranker(多模态重排序模型),首次在开源体系中系统性补齐了多模态 RAG 在“向量化检索 + 精排重排”两个关键环节上的能力空白。这两个模型是基于强大的Qwen3-VL基础模型构建的专用多模态向量与重排(Reranking)模型。

2026/01/08 23:07:09761
#Qwen3#Qwen3-VL-Embedding#Qwen3-VL-Reranker
大模型工具使用的三次进化:从 Function Calling 到程序化编排

大模型工具使用的三次进化:从 Function Calling 到程序化编排

本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。

2026/01/08 22:08:57375
#AIAgent#FunctionCalling#PTC
为什么大模型企业都在强调可以连续工作XX小时的Agent和模型?长时运行Agent解析(Long-Running Agents)

为什么大模型企业都在强调可以连续工作XX小时的Agent和模型?长时运行Agent解析(Long-Running Agents)

AI Agent 的一个关键趋势正在浮现:从“快速回答问题”转向“长时间稳定执行复杂任务”。本文系统梳理了为什么 Anthropic、OpenAI 等企业开始强调“长时运行 Agent”,并解释其真实含义并非模型一直思考,而是通过作业化、异步执行、可恢复运行和动态上下文管理,实现跨会话完成复杂目标。文章深入对比了长时 Agent 与传统脚本化 LLM Loop 的本质差异,分析其在自治能力、上下文工程、耐久执行与治理上的核心价值,并总结构建长时运行 AI Agent 所需的关键技术等。

2026/01/04 23:01:19426
#AIAgent#Long-RunningAgents#大模型应用
Claude Code如何更加高效使用?Claude Code创始人分享的13条Claude Code实践经验总结

Claude Code如何更加高效使用?Claude Code创始人分享的13条Claude Code实践经验总结

今天,Claude Code 的创建者 Boris 发了一条很长的 thread,第一次比较完整地讲了他自己是怎么使用 Claude Code 的。共13条总结,我们这里总结一下,供大家参考。

2026/01/03 23:37:50480
#ClaudeCode#VibeCoding
在大模型时代,AI 产品为什么更难复用?AI Agent产品应该如何开发?来自 Manus 的3个工程实践经验

在大模型时代,AI 产品为什么更难复用?AI Agent产品应该如何开发?来自 Manus 的3个工程实践经验

本文基于 Manus 一线工程成员的真实实践,总结并分析了 大模型时代 AI 产品在工程与复用层面发生的关键变化。文章并不关注模型参数或算法细节,而是聚焦于真实生产环境中的工程问题:功能交付的责任边界如何变化、为何原型验证比完整规划更重要,以及在 Agent 系统中个人角色与系统边界如何被重新定义。这些经验揭示了一个趋势——在大模型具备“执行能力”之后,AI 产品的可用性越来越依赖工程体系本身,而非模型能力本身。本文适合关注 AI 工程实践、Agent 架构以及大模型落地问题的技术读者参考。

2025/12/28 20:44:13318
#AIAgent经验#AI产品#大模型应用
Context Arena:长上下文大模型评测基准介绍

Context Arena:长上下文大模型评测基准介绍

Context Arena 是一个专注于评估大语言模型长上下文处理能力的基准平台。它基于 OpenAI 发布的 Multi-Round Coreference Resolution (MRCR) 数据集,提供交互式排行榜,用于比较不同模型在复杂长对话中的信息检索和理解性能。该基准强调模型在长上下文下的实际表现,避免单纯依赖训练数据记忆。

2025/12/27 10:42:00441
#ContextArena#大模型评测#大模型评测基准
2025年的大模型训练和大模型应用与之前有什么差别?来自前OpenAI研究人员、特斯拉FSD负责人Andrej Karpathy的年度总结:2025年6个大模型不一样的地方

2025年的大模型训练和大模型应用与之前有什么差别?来自前OpenAI研究人员、特斯拉FSD负责人Andrej Karpathy的年度总结:2025年6个大模型不一样的地方

昨天,Karpathy 发布了《2025 LLM Year in Review》,对过去一年大模型领域发生的结构性变化进行了深度复盘。在这篇总结中,他不再纠结于具体的模型参数,而是将目光投向了推理范式的演进、Agent 的真实形态以及一种被称为“Vibe Coding”的新型开发模式。

2025/12/21 21:10:17593
#RLHF#RLVR#大模型洞察
来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解

来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解

在今年的Microsoft Build 2023大会上,来自OpenAI的研究员Andrej Karpathy在5月24日的一场汇报中用了40分钟讲解了ChatGPT是如何被训练的,其中包含了训练一个能支持与用户对话的GPT的全流程以及涉及到的一些技术。信息含量丰富,本文根据这份演讲总结。

2025/12/21 17:20:242,766
#LLM#RLHF
基于可验证奖励的强化学习(Reinforcement Learning with Verifiable Rewards, RLVR)的介绍:为什么 2025 年,大模型训练的重心开始发生迁移?

基于可验证奖励的强化学习(Reinforcement Learning with Verifiable Rewards, RLVR)的介绍:为什么 2025 年,大模型训练的重心开始发生迁移?

过去几年,大语言模型的训练路线相对稳定:更大的模型、更长的预训练、更精细的指令微调与人类反馈对齐。这套方法在很长一段时间内持续奏效,也塑造了人们对“模型能力如何提升”的基本认知。但在 2025 年前后,一种并不算新的训练思路突然被推到台前,并开始占据越来越多的计算资源与工程关注度,这就是**基于可验证奖励的强化学习(Reinforcement Learning from Verifiable Rewards,RLVR)**。

2025/12/21 15:14:29688
#RLHF#RLVR#大模型训练
Gemini 3 Flash:Google 在 12 月 17 日发布的新一代默认模型

Gemini 3 Flash:Google 在 12 月 17 日发布的新一代默认模型

2025 年 12 月 17 日,Google 正式发布了 Gemini 3 Flash 模型。 这是 Gemini 3 系列中的一款高性能轻量模型,目前已经在 Gemini App 以及 Google 搜索的 AI Mode 中作为默认模型上线。

2025/12/18 15:04:03448
#Gemini3Flash#Google
Minion Skills: Claude Skills的开源实现

Minion Skills: Claude Skills的开源实现

本文介绍了 Claude 最近推出的 Skills 系统,以及作者在 Minion 框架中实现的一个完全开源的版本。Skills 的核心思路是让 AI Agent 在需要时再加载对应的专业能力,而不是一开始就把所有工具和知识都塞进上下文,从而缓解上下文窗口有限、成本高、响应慢的问题。

2025/12/17 22:06:31636
#Agent技巧#ClaudeSkills#大模型Agent框架
GPT-5.2与Gemini 3.0 Pro、Opus 4.5实测对比:前端页面没有更强

GPT-5.2与Gemini 3.0 Pro、Opus 4.5实测对比:前端页面没有更强

OpenAI 刚刚把 GPT-5.2 推上来了。我们在 DataLearnerAI 上把它和 Claude Opus 4.5、Gemini 3.0 Pro(Preview) 放到同一个对比页里,拉齐公开评测与基础规格,做一个“站在真实选择角度”的快速判断。

2025/12/12 16:25:57760
#GPT-5.2
Minion:比Anthropic更早实现大模型Programmatic Tool Calling范式的国产开源项目

Minion:比Anthropic更早实现大模型Programmatic Tool Calling范式的国产开源项目

2025年11月24日,Anthropic正式发布了Programmatic Tool Calling (PTC)特性,允许Claude通过代码而非单次API调用来编排工具执行。这一创新被认为是Agent开发的重要突破,能够显著降低token消耗、减少延迟并提升准确性。 然而,作为minion框架的创建者,我想分享一个有趣的事实:minion从一开始就采用了这种架构理念。在PTC概念被正式提出之前,minion已经在生产环境中证明了这种方法的价值。

2025/12/10 21:44:46275
#Minion#PTC
12...39
Next

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

Tensorflow中数据集的使用方法(tf.data.Dataset)吉布斯抽样的一个简单理解python操作数据库StabilityAI发布实时文本生成图片大模型SDXL Turbo——生成一张图片可能只需要0.207秒高斯混合模型(GMM)层次狄利克雷过程简介(Hierarchical Dirichlet Process, HDP)OpenAI发布ChatGPT Agent系统:一个新模型驱动的系统,可以写代码运行代码,使用浏览器订票,写PPT、做excel的全能Agent6张示意图解释6种语言模型(Language Transformer)使用方式css的层叠性FrontierMath:AI大模型高级数学推理评测的新基准

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介