加载中...
加载中...
Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规 模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同 时使用总体分布将参数的依赖结构化,从而避免过拟合问题。本节将讲述互换性并建立层次模型

我们对层次贝叶斯推断的策略与一般的多参数问题一样,但由于在实际中层次模型的参数很多,所以比较困难。在实际中,我们很难画出联合后验概率分布的图形。但是,我们可以使用近似的基于仿真的方法。 在这个部分,我们提出一个联合了分析的和数值的方法从联合后验分布p(θ, φ|y)中获取仿真结果,以 小鼠肿瘤实验的beta-binormial模型为例,总体分布是p(θ|φ),与似然函数p(y|θ)是共轭的。对于很多非共轭层次模型,更高级的算法将在后面叙述。即使针对更复杂的问题,使用共轭分布来获取近似估计也是很有用的。

在处理文本时,经常遇到超过1g存储的数据,直接简单的读取,可能遇到java空间不足的问题,为解决此问题,可将大文本数据按照行进行切分为很多块,并将每一块存储为一个文本

关于高斯过程,其实网上已经有很多中文博客的介绍了。但是很多中文博客排版实在是太难看了,而且很多内容介绍也不太全面,搞得有点云里雾里的。因此,我想自己发表一个相关的内容,大多数内容来自于英文维基百科和几篇文章。

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同时使用总体分布将参数的依赖结构化,从而避免过拟合问题。

贝叶斯分析在概率模型中有非常重要的作用,这些年以来比较有影响力的模型如LDA、非参数贝叶斯模型等都是基于贝叶斯分析的。贝叶斯分析有一些非常基础性的知识,在这里我们描述了贝叶斯分析里面的一些基本表示和一些分析准则等内容。

本文是Steffen Rendle的文章BPR: Bayesian Personalized Ranking from Implicit Feedback的译文

本文是Steffen Rendle的Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的译文。

这篇博客主要翻译自Gregor Heinrich的技术博客Parameter estimation for text analysis,介绍极大似然估计、极大后验估计和贝叶斯参数估计的原理和案例

使用R语言进行数据分析时,我们经常会遇到实验结果输出的问题,例如使用summary函数时,变量太多,控制台输出的结果不全,那么怎么将结果导出呢?

基于项目最近邻的协同过滤算法,面向的是隐偏好数据,数据格式为<userid,itemid>,测试算法的指标为precision和recall

狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)是一种非参数贝叶斯模型,它可以理解为一种聚类方法,但是不需要指定类别数量,它可以从数据中推断簇的数量。这篇博客将描述该模型及其求解过程。