DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: rag
Tag

Articles tagged "rag"

A curated list of original AI and LLM articles related to "rag", updated regularly.

Tags:#rag
如何评估向量大模型在多种任务上的表现?Massive Text Embedding Benchmark(MTEB)评测介绍

如何评估向量大模型在多种任务上的表现?Massive Text Embedding Benchmark(MTEB)评测介绍

MTEB是一个用于评估向量大模型向量化准确性的评测排行榜。它全称为Massive Text Embedding Benchmark,是一个旨在衡量文本嵌入模型在多种任务上表现的基准测试。

2025/07/15 18:48:21271
#MTEB#RAG评测
如何对向量大模型(embedding models)进行微调?几行代码实现相关原理

如何对向量大模型(embedding models)进行微调?几行代码实现相关原理

大语言模型是通过收集少量专门数据对模型的部分权重进行更新后得到一个比通用模型更加专业的模型。但是,当前大家讨论较多的都是语言模型的微调,对于嵌入模型(或者向量大模型)的微调讨论较少。Modal团队的工作人员发布了一个博客,详细介绍了向量大模型的微调工作,本文将其翻译之后提供给大家(原文:https://modal.com/blog/fine-tuning-embeddings )。

2024/07/21 17:08:453,275
#bge#RAG
开源模型进展迅猛!最新开源不可商用模型Command R+在大模型匿名投票得分上已经超过GPT-4-Turbo!

开源模型进展迅猛!最新开源不可商用模型Command R+在大模型匿名投票得分上已经超过GPT-4-Turbo!

开源大语言模型经过一年多的发展,终于有一个模型可以在权威榜单上击败GPT-4的较早的版本,这就是CohereAI企业开源的Command R+。这是一个开源但是不允许商用的模型,参数规模达到1040亿,也是目前为止开源参数规模最大的一个模型。

2024/04/09 20:35:231,765
#CohereAI#CommandR
ToolTalk:微软发布的一个用以评测大语言模型工具使用能力的评测工具和评测数据集

ToolTalk:微软发布的一个用以评测大语言模型工具使用能力的评测工具和评测数据集

为了更好地评估大语言模型的工具使用能力,微软的研究人员提出了ToolTalk Benchmark基准测试工具,可以帮助我们更加简单地理解大语言模型在工具使用方面的水准。ToolTalk旨在评估大型语言模型(LLMs)在对话环境中使用工具的能力。这些工具可以是搜索引擎、计算器或Web API等,它们能够帮助LLMs访问私有或最新的信息,并代表用户执行操作。

2024/04/05 21:42:10814
#RAG#ToolTalk
基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果

基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果

基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。

2023/11/08 20:10:293,520
#RAG#reranker
检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?

检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?

检索增强生成(Retrieval-augmented Generation,RAG)是一种结合了检索和大模型生成的方法。它从一个大型知识库中检索与输入相关的信息,然后利用这些信息作为上下文和问题一起输入给大语言模型,并让大语言模型基于这些信息生成答案的方式。检索增强生成可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,但是,如果文档切分有问题、检索不准确,结果也是不好的。

2023/10/27 11:46:081,421
#RAG#向量检索增强生成
检索增强生成(RAG)方法有哪些提升效果的手段:LangChain在RAG功能上的一些高级能力总结

检索增强生成(RAG)方法有哪些提升效果的手段:LangChain在RAG功能上的一些高级能力总结

检索增强生成(Retrieval-augmented Generation,RAG)可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,如果文档切分有问题、检索不准确,结果也是不好的。而检索增强生成也有一些提升方法,本文基于LangChain提供的一些方法给大家总结一下。

2023/10/27 11:45:434,225
#RAG#查询重写
LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!

LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!

检索增强生成(Retrieval-augmented generation,RAG)是一种将外部知识检索与大型语言模型生成相结合的方法,通常用于问答系统。当前使用大模型基于外部知识检索结果进行问答是当前大模型与外部知识结合最典型的方式,也是检索增强生成最新的应用。然而,近期的研究表明,这种方式并不总是最佳选择,特别是当检索到的文档数量较多时,这种方式很容易出现回答不准确的情况。为此,LangChain最新推出了LongContextReorder,推出了一种新思路解决这个问题。

2023/09/17 22:46:444,149
#LangChain#LongContextReorder

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Hot Blogs

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

Today's Picks

  • Anthropic 最新 Agent 工程方案:使用双 Agent 架构让 AI 实现真正的长时自主工作
  • Deep Neural Networks and Tabular Data: A Survey——XGBoost依然是最优秀的算法模型
  • R语言数据库操作(不定时更新)
  • 深度学习之GRU神经网络
  • 网络爬虫之基础java集合操作篇
  • C/C++源代码是如何被最终执行的?
  • 新产品越来越近!OpenAI可能会推出全球最强个人助手Jarvis个人助理工具:OpenAI新商标Voice Engine透露出OpenAI正在做的事情!
ChatGLM-6B升级!清华大学开源VisualGLM-6B:一个可以在本地运行的读懂图片的语言模型!