DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:Meta
标签

「Meta」相关文章

汇总「Meta」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#Meta
知名开源框架MetaGPT升级为Atoms:专注解决大模型时代的Vibe Coding产品如何落地,五分钟想好Idea,五分钟生成App,五分钟接入支付,五分钟部署产品

知名开源框架MetaGPT升级为Atoms:专注解决大模型时代的Vibe Coding产品如何落地,五分钟想好Idea,五分钟生成App,五分钟接入支付,五分钟部署产品

2026 年 1 月初,原名 MetaGPT 的 AI 开发框架完成了一次重大升级,将其核心产品 MGX 正式更名为 Atoms。这一消息由 DeepWisdom 团队在 X(原 Twitter)等平台发布,标志着该项目从单纯的“AI 编程助手”正式转向“AI 构建真实生意”的全新定位。

2026/01/25 22:51:18167
#Atoms#MetaGPT#MGX
重磅!MetaAI开源4050亿参数的大语言模型Llama3.1-405B模型!多项评测结果超越GPT-4o,与Claude-3.5 Sonnet平分秋色!

重磅!MetaAI开源4050亿参数的大语言模型Llama3.1-405B模型!多项评测结果超越GPT-4o,与Claude-3.5 Sonnet平分秋色!

Llama系列大语言模型是由MetaAI开源的一系列大语言模型。作为最早开源的大语言模型,Llama系列对大模型开源社区的推动有目共睹。而现在MetaAI开源Llama3.1系列模型,其中包括迄今为止最大规模的开源大语言模型Llama3.1-405B,参数规模达到了4050亿!其多项评测结果超过GPT-4、GPT-4o模型,与Claude3.5-Sonnet几乎有来有回!

2024/07/24 00:10:361,207
#Llama#Llama3.1#Llama3.1-405B
Llama3相比较前两代的模型(Llama1和Llama2)有哪些升级?几张图简单总结Llama3的训练成本、训练时间、模型架构升级等情况

Llama3相比较前两代的模型(Llama1和Llama2)有哪些升级?几张图简单总结Llama3的训练成本、训练时间、模型架构升级等情况

Llama3是MetaAI开源的最新一代大语言模型。一发布就引起了全球AI大模型领域的广泛关注。这是MetaAI开源的第三代大语言模型,也是当前最强的开源模型。但相比较第一代和第二代的Llama模型,Llama3的升级之处有哪些?本文以图表的方式总结Llama3的升级之处。

2024/04/21 20:31:562,675
#Llama3#Llama3-400B#Llama3-70B
开源王者!全球最强的开源大模型Llama3发布!15万亿数据集训练,最高4000亿参数,数学评测超过GPT-4,全球第二!

开源王者!全球最强的开源大模型Llama3发布!15万亿数据集训练,最高4000亿参数,数学评测超过GPT-4,全球第二!

大语言模型开源领域最重要的一个模型就是MetaAI开源的Llama系列。当前,很多著名开源模型都是基于Llama系列进行预训练得到。就在刚才,MetaAI开源了第三代Llama3系列。官方透露的信息非常多,Llama3系列是目前为止最强的开源大语言模型,未来还有4000亿参数版本,支持多模态、超长上下文、多国语言!

2024/04/19 01:15:492,599
#Llama3#Llama3-400B#Llama3-70B
Meta上线了一个基于Emu文本生成图像大模型的图像生成系统Imagine:图像细节丰富、色彩鲜明、想象力很棒,而且免费使用!

Meta上线了一个基于Emu文本生成图像大模型的图像生成系统Imagine:图像细节丰富、色彩鲜明、想象力很棒,而且免费使用!

在2023年的9月26日,MetaAI发布了一个Emu大模型,这是一个文本生成图像大模型,基于28亿参数的U-Net进行预训练得到,然后使用几千张高质量图像进行质量微调(Quality-Tuning)来提高模型的效果。不过,Emu模型并没有开源。但是,上周,Meta官方发布了一个全新的独立的文本生成图像系统Imagine,可以免费创作图像,质量很高。

2023/12/10 22:37:24718
#Emu#Emu大模型#Imagine
MetaGPT技术全解析:另一个AutoGPT,一个可以替代小型软件开发团队的配备齐全的软件开发GPT,产品经理、系统设计、代码实现一条龙

MetaGPT技术全解析:另一个AutoGPT,一个可以替代小型软件开发团队的配备齐全的软件开发GPT,产品经理、系统设计、代码实现一条龙

AI Agent被很多人认为是未来大模型的发展方向。此前,OpenAI安全团队负责人人Lilian Weng也发布了一篇详细介绍AI自动代理机器人的博客,引起了很多人的关注。7月份发布的MetaGPT是一个全新的AI Agent项目,它基于GPT-4提供了专注于软件开发的自动代理框架,几乎可以理解为配备了产品经历、系统设计师、程序员的一个小团队,可以基于原始的需求直接生成最后的代码项目。本文主要介绍一下这个项目,并分析一下背后的实现方式。

2023/08/07 16:52:413,838
#AIAgent#AutoGPT#MetaGPT
重磅!Meta发布LLaMA2,最高700亿参数,在2万亿tokens上训练,各项得分远超第一代LLaMA~完全免费可商用!

重磅!Meta发布LLaMA2,最高700亿参数,在2万亿tokens上训练,各项得分远超第一代LLaMA~完全免费可商用!

LLaMA是由Meta开源的一个大语言模型,是最近几个月一系列开源模型的基础模型。包括著名的vicuna系列、LongChat系列等都是基于该模型微调得到。可以说,LLaMA的开源促进了大模型在开源界繁荣发展。而刚刚,微软官方宣布Azure上架LLaMA2模型!这意味着LLaMA2正式发布!

2023/07/19 00:45:164,508
#LLaMA#LLaMA2#Meta
MetaAI发布语音识别错误率是OpenAI的Whisper模型的一半且支持1107种语言的ASR模型:MMS

MetaAI发布语音识别错误率是OpenAI的Whisper模型的一半且支持1107种语言的ASR模型:MMS

今天,Meta的首席AI科学家Yann LeCun在推特上宣布了MetaAI的最新研究成果:MMS,一个支持1107种语言的自动语音识别模型和语音合成模型,该模型自动语音识别的单词错误率只有OpenAI开源的Whisper的一半!但是支持的语言却有1107种,是Whisper的11倍!代码与预训练结果已开源,不过不可以商用哦~

2023/05/24 00:00:092,089
#ASR#MetaAI#MMS
强大的对象分割开源算法!Meta AI开源Segment Anything: Working(SAM)预训练大模型!

强大的对象分割开源算法!Meta AI开源Segment Anything: Working(SAM)预训练大模型!

SAM全称是Segment Anything Model,由MetaAI最新发布的一个图像分割领域的预训练模型。该模型十分强大,并且有类似GPT那种基于Prompt的工作能力,在图像分割任务上展示了强大的能力!此外,该模型从数据集到训练代码和预训练结果完全开源!真Open的AI!

2023/04/24 22:43:011,941
#MetaAI#图像分割#预训练模型

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

今日推荐

开源大语言模型再次大幅进步:微软团队开源的第二代WizardLM2系列在MT-Bench得分上超过一众闭源模型,得分仅次于GPT-4最新版Python中的Pickle操作(pkl文件解释)层次狄利克雷过程简介(Hierarchical Dirichlet Process, HDP)Bloomberg发布的最新的memray——Python内存分析器是什么?HttpClient的使用方法案例未经证实的GPT-4技术细节,关于GPT-4的参数数量、架构、基础设施、训练数据集、成本等信息泄露,仅供参考如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~Pseudo-document-based Topic Model(基于伪文档的主题模型)的理解以及源码解读论文中常见的英语表达CNN经典算法之Inception V1(GoogLeNet)

最热博客

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介