自然语言处理中常见的字节编码对(Byte-Pair Encoding,BPE)简介
字节对编码(Byte Pair Encoder,BPE),又叫digram coding,是一种在自然语言处理领域经常使用的数据压缩算法。在GPT系列模型中都有用到。主要是将数据中最常连续出现的字节(bytes)替换成数据中没有出现的字节的方法。该算法首先由Philip Gage在1994年提出。在这篇博客中我们将简单介绍一下这个方法。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
字节对编码(Byte Pair Encoder,BPE),又叫digram coding,是一种在自然语言处理领域经常使用的数据压缩算法。在GPT系列模型中都有用到。主要是将数据中最常连续出现的字节(bytes)替换成数据中没有出现的字节的方法。该算法首先由Philip Gage在1994年提出。在这篇博客中我们将简单介绍一下这个方法。
昨天,卡地夫大学的NLP研究小组CardiffNLP发布了一个全新的NLP处理Python库——TweetNLP,这是一个完全基于推文训练的NLP的Python库。它提供了一组非常实用的NLP工具,可以做推文的情感分析、emoji预测、命名实体识别等。
这篇博客主要介绍了文本预处理的一般步骤以及常见的自然语言处理任务简介。