DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: 推理显存
Tag

Articles tagged "推理显存"

A curated list of original AI and LLM articles related to "推理显存", updated regularly.

Tags:#推理显存
不同参数规模大语言模型在不同微调方法下所需要的显存总结

不同参数规模大语言模型在不同微调方法下所需要的显存总结

大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。

2023/12/22 22:12:582,967
#大模型微调#微调显存#推理显存

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

推荐模型:显式反馈模型VS隐式反馈模型MATH vs. MATH-500:数学推理评测基准的对比与解析OpenAI发布GPT-5.1:围绕“对话体验、一致性、任务适配性”进行的系统化优化的实质性升级!重回写作排名第一!OpenAI收入大揭秘:2024年收入40亿美金,2030年预计达到2000亿,年均复合增长超90%!ChatGPT占比将逐年下降!多元时间序列数据的预测和建模Google反击OpenAI的大杀器!下一代语言模型PaLM 2:增加模型参数并不是提高大模型唯一的路径!2022年程序员必备的网站收藏Indian Buffet Process(印度自助餐过程)介绍MistralAI发布了Mixtral 8×7B MoE模型的论文,更详细的参数和对比结果~大数据环境下的处理系统与数据分析

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介