大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Wishart分布在多元高斯的贝叶斯推断中非常重要。它通常作为正态分布的协方差矩阵的逆矩阵的共轭先验存在。这篇博客将详细讲述Wishart分布及其作用。
ChatGLM-6B是清华大学知识工程和数据挖掘小组发布的一个类似ChatGPT的开源对话机器人,由于该模型是经过约1T标识符的中英文训练,且大部分都是中文,因此十分适合国内使用。本文将详细记录如何在Windows环境下基于GPU和CPU两种方式部署使用ChatGLM-6B,并说明如何规避其中的问题。
当我们训练深度学习神经网络的时候通常希望能获得最好的泛化性能(generalization performance,即可以很好地拟合数据)。但是所有的标准深度学习神经网络结构如全连接多层感知机都很容易过拟合:当网络在训练集上表现越来越好,错误率越来越低的时候,实际上在某一刻,它在测试集的表现已经开始变差。早停法就是一种防止深度学习网络模型过拟合的方法。
R语言进行数据分析非常简单方便,在这篇博客中,我们将描述如何使用R语言进行K-means聚类分析,并分析结果。
在统计学中,普通最小二乘法(OLS)是一种用于在线性回归模型中估计未知参数的线性最小二乘法。这篇博客将简要描述其参数的求解过程。
在统计学中,矩母函数是一个关于随机变量的实值函数,它可以替代密度函数来描述分布。也就是说,出了概率密度函数外,我们也可以通过矩母函数来描述分布。
贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。
在回归模型中加入交互项是一种非常常见的处理方式。它可以极大的拓展回归模型对变量之间的依赖的解释。本篇博客将简要介绍这个交互项。
Dirichlet过程是一个随机过程,在非参数贝叶斯模型中有广泛运用,最常见的应用是Dirichlet过程混合模型