DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:有监督微调
标签

「有监督微调」相关文章

汇总「有监督微调」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#有监督微调
6种大模型的使用方式总结,使用领域数据集持续做无监督预训练可能是一个好选择

6种大模型的使用方式总结,使用领域数据集持续做无监督预训练可能是一个好选择

Sebastian Raschka是LightningAI的首席科学家,也是前威斯康星大学麦迪逊分校的统计学助理教授。他在大模型领域有非常深的简介,也贡献了许多有价值的内容。在最新的一期统计中,他总结了6种大模型的使用方法,引起了广泛的讨论。其中,关于使用领域数据集做无监督预训练是目前讨论较少,但十分重要的一个方向。

2023/12/24 22:13:331,422
#大模型预训练#无监督预训练

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 元宇宙企业Roblox究竟是一家什么样的企业
  • 智谱AI与清华大学联合发布第三代基座大语言模型ChatGLM3:6B版本的ChatGLM3能力大幅增强,依然免费商用授权!
  • 关于GPT-4的多模态版本最新消息:可能的代号是Gobi,也许会比Google下一代LLM的Gemini更早发布
  • OpenAI是一家什么样的企业——OpenAI介绍与成果总结
  • 阿里开源推理大模型QwQ-32B-Preview:开源领域对OpenAI o1模型奋起直追,能力接近o1-mini,超过GPT-4o!
  • Google反击OpenAI的大杀器!下一代语言模型PaLM 2:增加模型参数并不是提高大模型唯一的路径!
  • 为什么GitHub要求文件的末尾必须有换行符?
  • 如何让大模型提取更有信息密度的文本摘要?SalesforceAI最新的密度链提示方法Chain of Density Prompting